So I've spent a lot of time reading and re-reading the ending of chapter 9 in The Little Schemer, where the applicative Y combinator is developed for the "length" function. I think my confusion boils down to a single statement that contrasts two versions of length (before the combinator is factored out):
A:
((lambda (mk-length)
(mk-length mk-length))
(lambda (mk-length)
(lambda (l)
(cond
((null? l) 0)
(else (add1
((mk-length mk-length)
(cdr l))))))))
B:
((lambda (mk-length)
(mk-length mk-length))
(lambda (mk-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))
(mk-length mk-length))))
Page 170 (4th ed.) states that A "returns a function when we applied it to an argument" while B "does not return a function," thereby producing an infinite regress of self-applications. I'm stumped by this. If B is plagued by this problem, I don't see how A avoids it.
To see what happens, use the stepper in DrRacket. The stepper allows you to see all intermediary steps (and to go back and forth).
Paste the following into DrRacket:
(((lambda (mk-length)
(mk-length mk-length))
(lambda (mk-length)
(lambda (l)
(cond
((null? l) 0)
(else (add1
((mk-length mk-length)
(cdr l))))))))
'(a b c))
Then choose the teaching language "Intermediate Student with lambda". Then click the stepper button (the green triangle followed by a bar).
This is what the first step looks like:
Then make an example for the second function and see what goes wrong.
I want to use Clojure's Core.logic. However, I want to also understand how it works. Is there a concise explanation of it somewhere? (Like implementing a metacircular evaluator?)
Thanks!
core.logic is an implementation of miniKanren - originally written and designed in Scheme by Dan Friedman, William Byrd, Oleg Kiselyov and others. It is an attempt to embed Prolog-style relational programming within Lisp.
If you want to understand how it works you'll need to read the first three chapters of William Byrd's dissertation: https://scholarworks.iu.edu/dspace/bitstream/handle/2022/8777/Byrd_indiana_0093A_10344.pdf?sequence=1
The Reasoned Schemer also covers the unifier in detail. However the much more subtle goal portion of miniKanren isn't given a comprehensive treatment - you'll need to look at Byrd's dissertation for that.
Even then, as with meta-circular interpreters - many insights cannot be gained without trying to implement the system yourself in a variety of programming languages.
Does anyone know how I can figure out the free variables in a lambda expression? Free variables are the variables that aren't part of the lambda parameters.
My current method (which is getting me nowhere) is to simply use car and cdr to go through the expression. My main problem is figuring out if a value is a variable or if it's one of the scheme primitives. Is there a way to test if something evaluates to one of scheme's built-in functions? For example:
(is-scheme-primitive? 'and)
;Value: #t
I'm using MIT scheme.
For arbitrary MIT Scheme programs, there isn't any way to do this. One problem is that the function you describe just can't work. For example, this doesn't use the 'scheme primitive' and
:
(let ((and 7)) (+ and 1))
but it certainly uses the symbol 'and
.
Another problem is that lots of things, like and
, are special forms that are implemented with macros. You need to know what all of the macros in your program expand into to figure out even what variables are used in your program.
To make this work, you need to restrict the set of programs that you accept as input. The best choice is to restrict it to "fully expanded" programs. In other words, you want to make sure that there aren't any uses of macros left in the input to your free-variables
function.
To do this, you can use the expand
function provided by many Scheme systems. Unfortunately, from the online documentation, it doesn't look like MIT Scheme provides this function. If you're able to use a different system, Racket provides the expand
function as well as local-expand
which works correctly inside macros.
Racket actually also provides an implementation of the free-variables
function that you ask for, which, as I described, requires fully expanded programs as input (such as the output of expand
or local-expand
). You can see the source code as well.
For a detailed discussion of the issues involved with full expansion of source code, see this upcoming paper by Flatt, Culpepper, Darais and Findler.
This solution is probably less than ideal, but it will work for any lambda form you want to give it in the REPL environment of mit-scheme. Documentation for the procedures I used is found at the mit.edu doc site. get-vars
takes a quoted lambda
and returns a list of pairs. The first element of each pair is the symbol and the second is the value returned by environment-reference-type
.
(define (flatten lst)
(cond ((null? lst) ())
((pair? (car lst)) (append (flatten (car lst)) (flatten (cdr lst))))
(else
(cons (car lst) (flatten (cdr lst))))))
(define (get-free-vars proc-form)
(let ((env (ge (eval proc-form user-initial-environment))))
(let loop ((pf (flatten proc-form))
(out ()))
(cond ((null? pf) out)
((symbol? (car pf))
(loop (cdr pf) (cons (cons (car pf) (environment-reference-type env (car pf))) out)))
(else
(loop (cdr pf) out))))))
EDIT: Example usage:
(define a 100)
(get-vars '(lambda (x) (* x a g)))
=> ((g . unbound) (a . normal) (x . unbound) (* . normal) (x . unbound) (lambda . macro))
EDIT 2: Changed code to guard agains calling environment-reference-type
being called with something other than a symbol.
EDIT 3: As Sam has pointed out in the comments, this will not see the symbols bound in a let under the lambda as having any value.. not sure there is an easy fix for this. So, my statement about this taking any lambda
is wrong, and should have read more like "Any simple lambda
that doesn't contain new binding forms"... oh well.
I'm writing a Lisp in Haskell (code at GitHub) as a way of learning more about both languages.
The newest feature that I'm adding is macros. Not hygienic macros or anything fancy - just plain vanilla code transformations. My initial implementation had a separate macro environment, distinct from the environment that all other values live in. Between the read
and eval
functions I interspersed another function, macroExpand
, which walked the code tree and performed the appropriate transformations whenever it found a keyword in the macro environment, before the final form was passed on to eval
to be evaluated. A nice advantage of this was that macros had the same internal representation as other functions, which reduced some code duplication.
Having two environments seemed clunky though, and it annoyed me that if I wanted to load a file, eval
had to have access to the macro environment in case the file contained macro definitions. So I decided to introduce a macro type, store macros in the same environment as functions and variables, and incorporate the macro expansion phase into eval
. I was at first at a bit of a loss for how to do it, until I figured that I could just write this code:
eval env (List (function : args)) = do
func <- eval env function
case func of
(Macro {}) -> apply func args >>= eval env
_ -> mapM (eval env) args >>= apply func
It works as follows:
It's as though macros are exactly the same as functions, except the order of eval/apply is switched.
Is this an accurate description of macros? Am I missing something important by implementing macros in this way? If the answers are "yes" and "no", then why have I never seen macros explained this way before?
The answers are "no" and "yes".
It looks like you've started with a good model of macros, where the macro level and the runtime level in in separate worlds. In fact, this is one of the main points behind Racket's macro system. You can read some brief text about it in the Racket guide, or see the original paper that describes this feature and why it's a good idea to do that. Note that Racket's macro system is a very sophisticated one, and it's hygienic -- but phase separation is a good idea regardless of hygiene. To summarize the main advantage, it makes it possible to always expand code in a reliable way, so you get benefits like separate compilation, and you don't depend on code loading order and such problems.
Then, you moved into a single environment, which loses that. In most of the Lisp world (eg, in CL and in Elisp), this is exactly how things are done -- and obviously, you run into the problems that are described above. ("Obvious" since phase separation was designed to avoid these, you just happened to get your discoveries in the opposite order from how they happened historically.) In any case, to address some of these problems, there is the eval-when
special form, which can specify that some code is evaluated at run-time or at macro-expansion-time. In Elisp you get that with eval-when-compile
, but in CL you get much more hair, with a few other "*-time"s. (CL also has read-time, and having that share the same environment as everything else is triple the fun.) Even if it seems like a good idea, you should read around around and see how some lispers lose hair because of this mess.
And in the last step of your description you step even further back in time and discover something that is known as FEXPRs. I won't even put any pointers for that, you can find a ton of texts about it, why some people think that it's a really bad idea, why some other people think that it's a really good idea. Practically speaking, those two "some"s are "most" and "few" respectively -- though the few remaining FEXPR strongholds can be vocal. To translate all of this: it's explosive stuff... Asking questions about it is a good way to get long flamewars. (As a recent example of a serious discussion you can see the initial discussion period for the R7RS, where FEXPRs came up and lead to exactly these kinds of flames.) No matter which side you choose to sit at, one thing is obvious: a language with FEXPRs is extremely different than a language without them. [Coincidentally, working on an implementation in Haskell might affect your view, since you have a place to go to for a sane static world for code, so the temptation in "cute" super-dynamic languages is probably bigger...]
One last note: since you're doing something similar, yo ushould look into a similar project of implementing a Scheme in Haskell -- IIUC, it even has hygienic macros.
Not quite. Actually, you've pretty concisely described the difference between "call by name" and "call by value"; a call-by-value language reduces arguments to values before substitution, a call-by-name language performs substitution first, then reduction.
The key difference is that macros allow you to break referential transparency; in particular, the macro can examine the code, and thus can differentiate between (3 + 4) and 7, in a way that ordinary code can't. That's why macros are both more powerful and also more dangerous; most programmers would be upset if they found that (f 7) produced one result and (f (+ 3 4)) produced a different result.
Background Rambling
What you have there is very late binding macros. This is a workable approach, but it is inefficient, because repeated executions of the same code will repeatedly expand the macros.
On the positive side, this is friendly for interactive development. If the programmer changes a macro, and then re-invokes some code which uses it, such as a previously defined function, the new macro instantly takes effect. This is an intuitive "do what I mean" behavior.
Under a macro system which expands macros earlier, the programmer has to redefine all of the functions that depend on a macro when that macro changes, otherwise the existing definitions continue to be based on the old macro expansions, oblivious to the new version of the macro.
A reasonable approach is to have this late binding macro system for interpreted code, but a "regular" (for lack of a better word) macro system for compiled code.
Expanding macros does not require a separate environment. It should not, because local macros should be in the same namespace as variables. For instance in Common Lisp if we do this (let (x) (symbol-macrolet ((x 'foo)) ...))
, the inner symbol macro shadows the outer lexical variable. The macro expander has to be aware of the variable binding forms. And vice versa! If there is an inner let
for the variable x
, it shadows an outer symbol-macrolet
. The macro expander cannot just blindly substitute all occurrences of x
that occur in the body. So in other words, Lisp macro expansion has to be aware of the full lexical environment in which macros and other kinds of bindings coexist. Of course, during macro expansion, you don't instantiate the environment in the same way. Of course if there is a (let ((x (function)) ..)
, (function)
is not called and x
is not given a value. But the macro expander is aware that there is an x
in this environment and so occurrences of x
are not macros.
So when we say one environment, what we really mean is that there are two different manifestations or instantiations of a unified environment: the expansion-time manifestation and then the evaluation-time manifestation. Late-binding macros simplify the implementation by merging these two times into one, as you have done, but it does not have to be that way.
Also note that Lisp macros can accept an &environment
parameter. This is needed if the macros need to call macroexpand
on some piece of code supplied by the user. Such a recursion back into the macro expander through a macro has to pass the proper environment so the user's code has access to its lexically surrounding macros and gets expanded properly.
Concrete Example
Suppose we have this code:
(symbol-macrolet ((x (+ 2 2)))
(print x)
(let ((x 42)
(y 19))
(print x)
(symbol-macrolet ((y (+ 3 3)))
(print y))))
The effect of this to prints 4
, 42
and 6
. Let's use the CLISP implementation of Common Lisp, and expand this using CLISP's implementation-specific function called system::expand-form
. We cannot use regular, standard macroexpand
because that will not recurse into the local macros:
(system::expand-form
'(symbol-macrolet ((x (+ 2 2)))
(print x)
(let ((x 42)
(y 19))
(print x)
(symbol-macrolet ((y (+ 3 3)))
(print y)))))
-->
(LOCALLY ;; this code was reformatted by hand to fit your screen
(PRINT (+ 2 2))
(LET ((X 42) (Y 19))
(PRINT X)
(LOCALLY (PRINT (+ 3 3))))) ;
(Now firstly, about these locally
forms. Why are they there? Note that they correspond to places where we had a symbol-macrolet
. This is probably for the sake of declarations. If the body of a symbol-macrolet
form has declarations, they have to be scoped to that body, and locally
will do that. If the expansion of symbol-macrolet
does not leave behind this locally
wrapping, then declarations will have the wrong scope.)
From this macro expansion you can see what the task is. The macro expander has to walk the code and recognize all binding constructs (all special forms, really), not only binding constructs having to do with the macro system.
Notice how one of the instances of (print x)
is left alone: the one which is in the scope of the (let ((x ..)) ...)
. The other became (print (+ 2 2))
, in accordance with the symbol macro for x
.
Another thing we can learn from this is that macro expansion just substitutes the expansion and removes the symbol-macrolet
forms. So the environment that remains is the original one, minus all of the macro material which is scrubbed away in the expansion process. The macro expansion honors all of the lexical bindings, in one big "Grand Unified" environment, but then graciously vaporizes, leaving behind just the code like (print (+ 2 2))
and other vestiges like the (locally ...)
, with just the non-macro binding constructs resulting in a reduced version of the original environment.
Thus now when the expanded code is evaluated, just the reduced environment's run-time personality comes into play. The let
bindings are instantiated and stuffed with initial values, etc. During expansion, none of that was happening; the non-macro bindings just lie there asserting their scope, and hinting at a future existence in the run time.
What you're missing is that this symmetry breaks down when you separate analysis from evaluation, which is what all practical Lisp implementations do. Macro expansion would occur during the analysis phase so eval
can be kept simple.
I really recommend to have some of the Lisp books handy. Recommended is for example Christian Queinnec, Lisp in Small Pieces. The book is about the implementation of Scheme.
http://pagesperso-systeme.lip6.fr/Christian.Queinnec/WWW/LiSP.html
Chapter 9 is about macros: http://pagesperso-systeme.lip6.fr/Christian.Queinnec/WWW/chap9.html
For what its worth, the Scheme R5RS section Binding constructs for syntactic keywords has this to say about it:
Let-syntax
andletrec-syntax
are analogous tolet
andletrec
, but they bind syntactic keywords to macro transformers instead of binding variables to locations that contain values.
See: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.3.1
This seems to imply a separate strategy should be used, at least for the syntax-rules
macro system.
#;1> let
Error: unbound variable: let
#;1> (define let +)
#;2> (let ((talk "hello!")) (write talk))
"hello!"
#;3> let
#<procedure C_plus>
#;4> (let 1 2)
Error: (let) not a proper list: (let 1 2)
Call history:
<syntax> (let 1 2) <--
#;4> (define a let)
#;5> (a 1 2)
3
Instead of the traditional tutorials and books that mostly explain syntax, data structures, functions, high-order functions, macros, etc., and instead of the traditional project Euler like exercises, what are good comprehensive resources to learn how to design large applications in Lisp languages, covering client side as well as server side design and implementation?
Are there any guides out there, that explain from step 1 to step 42, how to incrementally implement an interesting application?
You might like the book Clojure in Action. It starts with an introduction to Clojure, goes on to discuss use cases where Clojure shines in "real world" software such as state management, concurrency, code generation and Java-interop, and then the book walks you through the development of a non-trivial, scalable web application that uses unit testing, custom DSLs, Hadoop, HBase and RabbitMQ.
The best book IMHO to really get Scheme is Structure and Interpretation of Computer Programs (SICP).
Through the chapters, you'll implement progressively more complex systems - a numeric tower, a picture-manipulation language, a stream processor, concurrent programming, ... until finally, in the last two chapters, you end up writing several interpreters for different languages (Scheme itself, a logic language, ...), and a virtual machine and a compiler for Scheme.
The examples start slow and easy, and build on difficulty until you reach fairly large, complex and self-contained systems. It's the ultimate experience for really, really understanding how a programming language works and how to manage complexity and abstraction in your code. You'll be a better programmer after reading this book, I can assure you.
Sorry, no client-server applications in the book, but the systems developed will leave you ready to tackle fairly complex programming tasks in Scheme.
See Practical Common Lisp. Also, I think some of the Racket tutorials are pretty good: e.g., building a web app. That said, no tutorial or book is going to cover an example that is a full-featured application you could deploy.
Actually, Practical Common Lisp describes a lot of useful patterns and approaches. Also take a look at Land of Lisp and Lisp Outside the Box, which isn't finished, alas.
Personally, I found this book to be quite useful. It has an AI-centric approach oftentimes (as one would expect, given the title), but it also covers broader topics (especially PL stuff [compilers and interpreters specifically]), and it offers a deep understanding of common lisp. As an alternative, I also like Graham's On Lisp for 'esoteric' lispiness (advanced macros, some further exploration of PL-implementation stuff). And yeah, you can't go wrong with SICP. Happy hunting.
This question is a corollary to: Editing programs ?while they are running?? Why?
I'm only recently being exposed to the world of Clojure and am fascinated by a few examples I've seen of "live coding". The question linked above discusses the "why."
My question is: How is this live coding technique possible? Is it a characteristic of the clojure language which makes it possible? Or is it just a pattern that they applied which could be applied to any language? I've got a background in python and java. Would it be possible to "live code" in either of these languages like it is possible in clojure?
Some language implementations have that for a long time, especially many Lisp variants and Smalltalk.
Lisp has identifiers as a data structure, called symbols. These symbols can be reassigned and they are looked up at runtime. This principle is called late binding. Symbols name functions and variables.
Additionally Lisp implementations either have at runtime an interpreter or even a compiler. The interface are the functions EVAL
and COMPILE
. Plus there is a function LOAD
, which allows loading of source code and compiled code.
Next a language like Common Lisp has an object system which allows changes to the class hierarchy, classes themselves, can add/update/remove methods and propagates these changes to already existing objects. So the object-oriented software and code can be updated itself. With the Meta-object Protocol one can even re-program the object system at runtime.
It's also important that Lisp implementations then can garbage collect removed code. That way the running Lisp will not grow in runtime size just because code is replaced.
Lisp often also has an error system which can recover from errors and allows replacing defective code from within the debugger.
JRebel is one solution for Java. Here's a brief passage from their FAQ:
JRebel integrates with the JVM and application servers mainly on the class loader level. It does not create any new class loaders, instead, it extends the existing ones with the ability to manage reloaded classes.
There are a lot of good answers here, and I'm not sure I can improve on any of them, but I wanted to add some comments around Clojure and Java.
First off, Clojure is written in Java, so you can definitely build a live-coding environment in Java. Just think of Clojure as a specific flavor of live-coding environment.
Basically, live coding in Clojure works via the read function in main.clj and the eval function in core.clj (src/clj/clojure/main.clj and src/clj/clojure/core.clj in the github repository). You read in the forms and pass them to eval, which calls the clojure.lang.Compiler (src/jvm/clojure/lang/Compiler.java in the repo).
Compiler.java converts Clojure forms into JVM bytecode using the ASM library (ASM website here, documentation here). I'm not sure what version of the ASM library is used by Clojure. This bytecode (an array of bytes => byte[] bytecode is the member of the Compiler class that will ultimately hold the bytes generated by the clojure.asm.ClassWriter class via ClassWriter#toByteArray) must then be converted to a class and linked into the running process.
Once you have a representation of a class as a byte array, it's a matter of getting ahold of a java.lang.ClassLoader, calling defineClass to turn those bytes into a Class, and then passing the resulting Class to the resolve method of the ClassLoader to link it to the Java runtime. This is basically what happens when you define a new function, and you can see the internals of the compiler in Compiler$FnExpr which is the inner class that generates the bytecode for function expressions.
There's more going on than that with respect to Clojure, such as the way in which it handles namespace and symbol interning. I'm not completely sure how it gets around the fact that the standard ClassLoader will not replace a linked Class with a new version of that Class, but I suspect it has to do with how classes are named and how symbols are interned. Clojure also defines its own ClassLoader, a certain clojure.lang.DynamicClassLoader, which inherits from java.net.URLClassLoader, so that might have something to do with it; I'm not sure.
In the end, all the pieces are there to do live-coding in Java between ClassLoaders and bytecode generators. You just have to provide a way to input forms into a running instance, eval the forms, and link them up.
Hope this sheds a little more light on the subject.
The concepts originated in the Lisp world, but just about any language can do it (certainly, if you have a repl, you can do this sort of stuff). It's simply better known in the Lisp world. I know there are slime-esque packages for haskell and ruby, and I would be very surprised if such a thing didn't exist for Python as well.
It is a pattern that can be applied to any language, provided that the language was written with an environment that permits reassigning names associated with blocks of code.
In the computer, code and data exists in memory. In programming languages, we use names to refer to those "chunks" of memory.
int a = 0;
would "name" some number of bytes of memory "a". It would also "assign" that memory the byte value corresponding to 0. Depending on the type system,
int add(int first, int second) {
return first + second;
}
would "name" some number of bytes of memory "add". It would also "assign" that memory to contain the machine instructions to look into the call stack for two "int" numbers, add them together, and put the result in the appropriate place on the call stack.
In a type system that separates (and maintains) names to blocks of code, the end result is that you can easily pass blocks of code around by reference much in the same way you can variable memory around by reference. The key is to make sure the type system "matches" only compatible types, otherwise passing around the blocks of code might induce errors (like returning a long when originally defined to return an int).
In Java, all types resolve to a "signature" which is a string representation of the method name and "type". Looking at the add example provided, the signature is
// This has a signature of "add(I,I)I"
int add(int first, int second) {
return first + second;
}
If Java supported (as Clojure does) method name assignment, it would have to expand on its declared type system rules, and allow method name assignment. A fake example of method assignment would logically look like
subtract = add;
but this would require the need to declare subtract, with a strongly typed (to match Java) "type".
public subtract(I,I)I;
And without some care, such declarations can easily tread upon already-defined parts of the language.
But to get back to your answer, in languages that support such, the names basically are pointers to blocks of code, and can be reassigned provided you don't break the expectations of input and return parameters.
It's possible in many languages, but only if you have the following features:
Lisp/Clojure has all of these built in by default, which is one of the reasons why it is particularly prominent in the Lisp world.
Example demonstrating these features (all at the Clojure REPL):
; define something in the current namespace
(def y 1)
; define a function which refers to y in the current namespace
(def foo [x] (+ x y))
(foo 10)
=> 11
; redefine y
(def y 5)
; prove that the change was picked up dynamically
(foo 10)
=> 15
All that is required is:
Yes, it's also possible in other languages. I've done it in Python for an online server.
The key feature needed is the ability to define or redefine new functions and methods at runtime and this is easy with Python where you have "eval", "exec" and where classes and modules are first-class objects that can be patched at runtime.
I implemented it practically by allowing a separate socket connection (for security reasons only from the local machine) accepting strings and exec
-ing them in the context of the running server. Using this approach I was able to update the server while it was running without having the connected users to suffer a disconnection. The server was composed of two processes and was an online playfield with a client written in Haxe/Flash, using a permanent socket connection for realtime interaction between players.
In my case I used this possibility only for some quick fixes (the biggest was removing ghost connections that were remaining up in case of a network disconnect in a specific protocol state and I also fixed the bug that allowed the creation of these ghost connections).
I also used this management backdoor to get some resource use information while the server was running. As a funny note the very first bug I fixed on a running server was a bug in the backdoor machinery itself (but it wasn't online with real users in that case, just artificial users for load testing, so it was more like a check if it could be done than a real use as there would have been no problems at all shutting down the server for that).
IMO the bad part of doing this kind of live hacking is that once you fix the running instance and you can be sure that the fix works, you still have to do it in the regular source code and if the fix isn't trivial you cannot be 100% sure that the fix will work once you boot an updated version of the server.
Even if your environment allows to save the patched image without bringing it down, still you cannot be sure that the fixed image will start or will work correctly. The "fix" on the running program could for example break the startup process making it impossible to get to a correct running state.
Java's debugging api's allow you to do this - that's how edit/continue aka hotswapping is implemented.
This question is related to "How the yin-yang puzzle works?". The yin yang example of continuations in scheme looks like this, according to Wikipedia article:
(let* ((yin
((lambda (cc) (display #\@) cc) (call-with-current-continuation (lambda (c) c))))
(yang
((lambda (cc) (display #*) cc) (call-with-current-continuation (lambda (c) c)))))
(yin yang))
I am trying to write an equivalent piece of code in a (edit: statically) typed language, such as SML/NJ, but it is giving me typing errors. So either the puzzle does not type, or I am misunderstanding the scheme syntax. What would the above piece of code look like in SML or Ocaml (with callcc
extension)?
By the way, what is the source of the puzzle? Where did it come from?
Edit: I think I know the answer. We need a recursive type t
satisfying t = t -> s
for some type s
.
Edit of edit: No it is not, the answer is a recursive type t
satisfying t = t -> t
.
I think I am going to answer my own question. I will show two solutions, one in eff and another in Ocaml.
We are going to work with eff (I am blowing my own horn here, see below for another way in OCaml with Oleg's delimcc extension.) The solution is explained in the paper Programming with algebric effects and continuations.
First we define shift
and reset
in eff:
type ('a, 'b) delimited =
effect
operation shift : (('a -> 'b) -> 'b) -> 'a
end
let rec reset d = handler
| d#shift f k -> with reset d handle (f k) ;;
Here is the yin yang puzzle transcribed into eff:
let y = new delimited in
with reset y handle
let yin = (fun k -> std#write "@" ; k) (y#shift (fun k -> k k)) in
let yang = (fun k -> std#write "*" ; k) (y#shift (fun k -> k k)) in
yin yang
But eff complains about it that it can't solve the type equation ? = ? ? ?. At present eff cannot handle arbitrary recursive types, so we are stuck. As a way of cheating, we can turn off type checking to see if at the very least the code does what it is supposed to:
$ eff --no-types -l yinyang.eff
@*@**@***@****@*****@******@*******@********@*********@*******...
Ok, it's doing the right thing, but the types are not powerful enough.
For this example we need Oleg Kiselyov's delimcc library. The code is as follows:
open Delimcc ;;
let y = new_prompt () in
push_prompt y (fun () ->
let yin = (fun k -> print_string "@" ; k) (shift y (fun k -> k k)) in
let yang = (fun k -> print_string "*" ; k) (shift y (fun k -> k k)) in
yin yang)
Again, Ocaml won't compile because it hits a recursive type equation. But with the -rectypes
option we can compile:
ocamlc -rectypes -o yinyang delimcc.cma yinyang.ml
It works as expected:
$./yinyang
@*@**@***@****@*****@******@*******@********@*********@...
OCaml computes that the type of yin
and yang
is ('a -> 'a) as 'a
, which is its way of saying "a type ? such that ? = ? ? ?". This is precisely the type characteristic of the untyped ?-calculus models. So there we have it, the yin yang puzzle essentially uses features of the untyped ?-calculus.
It is possible to declare a recursive functional type in C#, a statically-typed language:
delegate Continuation Continuation(Continuation continuation);
This definition is equivalent to ML?s ? : ? ? ?
.
Now we can ?translate? the yin-yang puzzle into C#. This does require a transformation for the call/cc, and we need to do the transformation twice because there are two of them in it, but the result still looks very much like the original and still has a yin(yang)
call in it:
Continuation c1 = cc1 =>
{
Continuation yin = new Continuation(arg => { Console.Write("@"); return arg; })(cc1);
Continuation c2 = cc2 =>
{
Continuation yang = new Continuation(arg => { Console.Write("*"); return arg; })(cc2);
return yin(yang);
};
return c2(c2);
};
c1(c1);
Clearly now, the variable yang
is only in local scope, so we can actually optimise it away:
Continuation c1 = cc1 =>
{
Continuation yin = new Continuation(arg => { Console.Write("@"); return arg; })(cc1);
Continuation c2 = cc2 => yin(new Continuation(arg => { Console.Write("*"); return arg; })(cc2));
return c2(c2);
};
c1(c1);
Now, we realise that those little inline functions really just output a character and otherwise do nothing, so we can unwrap them:
Continuation c1 = cc1 =>
{
Console.Write("@");
Continuation yin = cc1;
Continuation c2 = cc2 =>
{
Console.Write("*");
return yin(cc2);
};
return c2(c2);
};
c1(c1);
Finally, it becomes clear that the variable yin
is redundant too (we can just use cc1
). To preserve the original spirit though, rename cc1
to yin
and cc2
to yang
and we get our beloved yin(yang)
back:
Continuation c1 = yin =>
{
Console.Write("@");
Continuation c2 = yang =>
{
Console.Write("*");
return yin(yang);
};
return c2(c2);
};
c1(c1);
All of the above are the same program, semantically. I think the end-result is a fantastic C# puzzle in itself. So I would answer your question by saying: yes, clearly it makes a lot of sense even in a statically-typed language :)
See also my answer to how the yin yang puzzle works, which I had to figure out an answer to before I could answer this one.
Being a "typed" language does not, by itself, make the difference to whether this puzzle is expressible in it (no matter how vague the term "typed language" is). However, to answer your question most literally: yes, it?s possible, because Scheme itself is a typed language: each value has a known type. This is obviously not what you meant, so I assume you mean whether this is possible in a language where each variable is assigned a permanent type that never changes (a.k.a. "statically typed language").
Moreover, I?ll assume that you want the spirit of the puzzle preserved when expressed in some language. Obviously it?s possible to write a Scheme interpreter in x86 machine code, and obviously it?s possible to write an x86 machine code interpreter in a typed language which only has integer data types and function pointers. But the result isn?t in the same "spirit". So to make this more precise, I will place an extra requirement: the result must be expressed using true continuations. Not an emulation, but real full-on continuations.
So, can you have a statically typed language with continuations? It turns out you can, but you might still call it cheating. For example, in C#, if my continuations were defined as "function that takes an object and returns an object", where "object" is a type that can hold anything at all, will you find this acceptable? What if the function takes and returns a "dynamic"? What if I have a "typed" language where every function has the same static type: "function", without defining the types of arguments and return types? Is the resulting program still in the same spirit, even though it uses true continuations?
My point is that the "statically typed" property still allows for a huge amount of variation in the type system, enough to make all the difference. So just for fun, let?s consider what the type system would need to support in order to qualify as non-cheating by any measure.
The operator call/cc(x)
can also be written as x(get/cc)
, which is much easier to comprehend in my opinion. Here, x
is a function that takes a Continuation and returns a value, while get/cc
returns a Continuation
. Continuation
has all traits of a function; it can be called with one argument, and will sort of substitute the value passed in to wherever get/cc that created it was originally located, additionally resuming execution at that point.
This means that get/cc has an awkward type: it?s a function
, but the very same location will eventually return a value whose type we don?t know yet. Suppose however, that in the spirit of statically-typed languages, we require the return type to be fixed. That is, when you call the continuation object, you can only pass in values of a predefined type. With this approach, the type of the continuation function can be defined with the recursive expression of the form T = function T->T
. As pointed out by a friend, this can type actually be declared in C#: public delegate T T(T t);
!
So there you have it; being "typed" does not preclude nor guarantee that you can express this puzzle without altering its nature. However, if you allow for the static type "can be anything" (known as object
in Java and C#), then the only other thing you need is support for true continuations, and the puzzle can be represented no problem.
Approaching the same question from a different perspective, consider my rewrite of the puzzle into something more reminiscent of a traditional statically-typed imperative language, which I explained in the linked answer:
yin = (function(arg) { print @; return arg; })(get-cc);
yang = (function(arg) { print *; return arg; })(get-cc);
yin(yang);
Here, the type of yin
and yang
never changes. They always store a "continuation C that takes a C and returns a C". This is very much compatible with static typing, whose only requirement is that the type doesn?t change next time you execute that code.
I'm trying to find how call/cc is implemented. The best I've found is this Haskell snippet:
callCC f = Cont $ \k -> runCont (f (\a -> Cont $ _ -> k a)) k
Although this is not as simple as I want due to the Cont
and runCont
. I've also found descriptions of what it does, although never as clear as actual code.
So how is it implemented in its simplest form? I am tagging this with Scheme and Haskell as those are two languages I prefer.
"Implementing call/cc
" doesn't really make sense at the layer you're working in; if you can implement call/cc
in a language, that just means it has a built-in construct at least as powerful as call/cc
. At the level of the language itself, call/cc
is basically a primitive control flow operator, just like some form of branching must be.
Of course, you can implement a language with call/cc
in a language without it; this is because it's at a lower level. You're translating the language's constructs in a specific manner, and you arrange this translation so that you can implement call/cc
; i.e., generally, continuation-passing style (although for non-portable implementation in C, you can also just copy the stack directly; I'll cover continuation-passing style in more depth later). This does not really give any great insight into call/cc
itself ? the insight is into the model with which you make it possible. On top of that, call/cc
is just a wrapper.
Now, Haskell does not expose a notion of a continuation; it would break referential transparency, and limit possible implementation strategies. Cont
is implemented in Haskell, just like every other monad, and you can think of it as a model of a language with continuations using continuation-passing style, just like the list monad models nondeterminism.
Technically, that definition of callCC
does type if you just remove the applications of Cont
and runCont
. But that won't help you understand how it works in the context of the Cont
monad, so let's look at its definition instead. (This definition isn't the one used in the current Monad Transformer Library, because all of the monads in it are built on top of their transformer versions, but it matches the snippet's use of Cont
(which only works with the older version), and simplifies things dramatically.)
newtype Cont r a = Cont { runCont :: (a -> r) -> r }
OK, so Cont r a
is just (a -> r) -> r
, and runCont
lets us get this function out of a Cont r a
value. Simple enough. But what does it mean?
Cont r a
is a continuation-passing computation with final result r
, and result a
. What does final result mean? Well, let's write the type of runCont
out more explicitly:
runCont :: Cont r a -> (a -> r) -> r
So, as we can see, the "final result" is the value we get out of runCont
at the end. Now, how can we build up computations with Cont
? The monad instance is enlightening:
instance Monad (Cont r) where
return a = Cont (\k -> k a)
m >>= f = Cont (\k -> runCont m (\result -> runCont (f result) k))
Well, okay, it's enlightening if you already know what it means. The key thing is that when you write Cont (\k -> ...)
, k
is the rest of the computation ? it's expecting you to give it a value a
, and will then give you the final result of the computation (of type r
, remember) back, which you can then use as your own return value because your return type is r
too. Whew! And when we run a Cont
computation with runCont
, we're simply specifying the final k
? the "top level" of the computation that produces the final result.
What's this "rest of the computation" called? A continuation, because it's the continuation of the computation!
(>>=)
is actually quite simple: we run the computation on the left, giving it our own rest-of-computation. This rest-of-computation just feeds the value into f
, which produces its own computation. We run that computation, feeding it into the rest-of-computation that our combined action has been given. In this way, we can thread together computations in Cont
:
computeFirst >>= \a ->
computeSecond >>= \b ->
return (a + b)
or, in the more familiar do
notation:
do a <- computeFirst
b <- computeSecond
return (a + b)
We can then run these computations with runCont
? most of the time, something like runCont foo id
will work just fine, turning a foo
with the same result and final result type into its result.
So far, so good. Now let's make things confusing.
wtf :: Cont String Int
wtf = Cont (\k -> "eek!")
aargh :: Cont String Int
aargh = do
a <- return 1
b <- wtf
c <- return 2
return (a + b + c)
What's going on here?! wtf
is a Cont
computation with final result String
and result Int
, but there's no Int
in sight.
What happens when we run aargh
, say with runCont aargh show
? i.e., run the computation, and show
its Int
result as a String
to produce the final result?
We get "eek!"
back.
Remember how k
is the "rest of the computation"? What we've done in wtf
is cunningly not call it, and instead supply our own final result ? which then becomes, well, final!
This is just the first thing continuations can do. Something like Cont (\k -> k 1 + k 2)
runs the rest of the computation as if it returned 1, and again as if it returned 2, and adds the two final results together! Continuations basically allow expressing arbitrarily complex non-local control flow, making them as powerful as they are confusing. Indeed, continuations are so general that, in a sense, every monad is a special case of Cont
. Indeed, you can think of (>>=)
in general as using a kind of continuation-passing style:
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
The second argument is a continuation taking the result of the first computation and returning the rest of the computation to be run.
But I still haven't answered the question: what's going on with that callCC
? Well, it calls the function you give with the current continuation. But hang on a second, isn't that what we were doing with Cont
already? Yes, but compare the types:
Cont :: ((a -> r) -> r) -> Cont r a
callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a
Huh. You see, the problem with Cont
is that we can't sequence actions from inside of the function we pass ? we're just producing an r
result in a pure manner. callCC
lets the continuation be accessed, passed around, and just generally be messed around with from inside Cont
computations. When we have
do a <- callCC (\cc -> ...)
foo ...
You can imagine cc
being a function we can call with any value inside the function to make that the return value of callCC (\cc -> ...)
computation itself. Or, of course, we could just return a value normally, but then calling callCC
in the first place would be a little pointless :)
As for the mysterious b
there, it's just because you can use cc foo
to stand in for a computation of any type you want, since it escapes the normal control flow and, like I said, immediately uses that as the result of the entire callCC (\cc -> ...)
. So since it never has to actually produce a value, it can get away with returning a value of any type it wants. Sneaky!
Which brings us to the actual implementation:
callCC f = Cont (\k -> runCont (f (\a -> Cont (_ -> k a))) k)
First, we get the entire rest of the computation, and call it k
. But what's this f (\a -> Cont (_ -> k a))
part about? Well, we know that f
takes a value of type (a -> Cont r b)
, and that's what the lambda is ? a function that takes a value to use as the result of the callCC f
, and returns a Cont
computation that ignores its continuation and just returns that value through k
? the "rest of the computation" from the perspective of callCC f
. OK, so the result of that f
call is another Cont
computation, which we'll need to supply a continuation to in order to run. We just pass the same continuation again since, if everything goes normally, we want whatever the computation returns to be our return value and continue on normally. (Indeed, passing another value wouldn't make sense ? it's "call with current continuation", not "call with a continuation other than the one you're actually running me with".)
All in all, I hope you found this as enlightening as it is long. Continuations are very powerful, but it can take a lot of time to get an intuition for how they work. I suggest playing around with Cont
(which you'll have to call cont
to get things working with the current mtl) and working out how you get the results you do to get a feel for the control flow.
Recommended further reading on continuations:
call/cc
is trivial to implement. The hard part is setting up the environment where it is possible to implement.
We must first define a continuation-passing style (CPS) execution environment. In this environment, your functions (or function-like things) don't directly return values; instead, they are passed a function that represents the 'next step' in the computation - the 'continuation' - and they pass their result there. In Haskell, this looks like this:
newtype Cont r a = Cont { runCont :: (a -> r) -> r }
As you can see, a Cont
monad action is really a function that takes a continuation (a -> r)
, passes a result a
to the continuation, and gets back a final result of r
, which it simply passes through to its caller (ie, a Cont
monad action should tail call into the continuation). runCont
just takes it out of the newtype wrapper - you could also think of it as invoking an action with some particular continuation, as in runCont someAction someContinuation
.
We can then turn this into a monad:
instance Monad (Cont r) where
return x = Cont $ \cc -> cc x
(Cont f) (>>=) g = Cont $ \cc -> f (\r -> runCont (g r) cc)
As you can see, return
just gets a continuation cc
, and passes its value to the continuation. (>>=)
is a bit trickier, it has to invoke f
with a continuation that then invokes g
, gets the action back, and then passes the outer continuation to this new action.
So given this framework, getting at the continuation is simple. We just want to invoke a function with its continuation twice. The tricky part is we need to rewrap this continuation in a new monadic action that throws out the existing continuation. So let's break it down a bit:
-- Invoke a raw continuation with a given argument, throwing away our normal
-- continuation
gotoContinuation :: (a -> r) -> a -> Cont r x
gotoContinuation continuation argument = Cont $ _ -> continuation argument
-- Duplicate the current continuation; wrap one up in an easy-to-use action, and
-- the other stays the normal continuation for f
callCC f = Cont $ \cc -> runCont (f (gotoContinuation cc)) cc
Simple, no?
In other languages like Scheme, the principle is the same, although it may be implemented as a compiler primitive; the reason we can do it in Haskell is because the continuation-passing was something we defined in Haskell, not at a lower level of the runtime. But the principle is the same - you need to have CPS first, and then call/cc
is a trivial application of this execution model.
You've heard the Haskell side of the equation; I'll give you the Racket/Scheme one, and whichever one is most helpful to you, you can run with it.
My answer will be a lot shorter, because I think that the best source I can give you for the implementation of call/cc in a simple racket evaluator comes from Shriram Krishnamurthi's PLAI, specifically section 20. I thought about including the relevant portion of the interpreter--it's on page 205--but after trying to reformat it several times I decided that it would make more sense in its proper place on the page.
Again, I'm not trying to explain the idea behind call/cc here, just point you to a working implementation. Let me know if you have other questions.
Risking of being off-language I think that in Smalltalk continuations can be implemented and understood the easiest. The reason is that in Smalltalk the execution stack is formed from normal objects that can be accessed and manipulated like any other object.
To implement a simple continuation object the following two methods are necessary. In the first method we initialize the continuation by iterating over the parent (sender) frames (contexts) and copying their state (program counter, temporaries, arguments):
Continuation>>initializeFromContext: aContext
context := aContext.
stream := WriteStream on: (Array new: 200).
[context notNil] whileTrue: [
stream nextPut: context.
1 to: context class instSize do: [:index |
stream nextPut: (context instVarAt: index)].
1 to: context size do: [:index |
stream nextPut: (context at: index)].
context := context sender].
values := stream contents
The second method is to resume the execution: First we unwind the current stack (again that is just a simple loop over the execution stack), then we restore the captured stack frames, reattach them to the current stack frame thisContext
and resume the execution with the argument anObject
:
Continuation>>value: anObject
self terminate: thisContext.
stream := values readStream.
[stream atEnd] whileFalse: [
context := stream next.
1 to: context class instSize do: [:index |
context instVarAt: index put: stream next].
1 to: context size do: [:index |
context at: index put: stream next]]
thisContext swapSender: values first.
^ anObject
With these two methods we can easily build callCC
:
Continuation class>>callCC: aBlock
^ aBlock value: (self new initializeFromContext: thisContext sender)
The beauty of this approach is that the printed code shows everything that is needed to implement full continuations (and similarly other kinds of continuations). There is no behavior hidden in the system (VM). One can use a debugger to step through each part and observe how the execution stack is manipulated.
The code above is from the Seaside web-framework. To play with the code you might want to use a ready-made distribution and browse to the classes WAContinuation
and WAContinuationTest
.
Well, I'll provide a much shorter, Scheme-based answer, since this is tagged "scheme" too.
To understand why your attempt to implement call/cc
must fail, you must understand what continuation-passing style is. Once you understand that, it's pretty simple:
call/cc
can't be implemented in direct style.But to give a bit more information, continuation-passing style is a flow-control discipline where you forego use of a call stack in favor a calling convention where every procedure call passes an "extra" argument: a closure that the called procedure is supposed to call when it's "done" (passing the "return value" as the argument). These extra argument closures are called continuations.
Any program can be mechanically translated into continuation-passing style, by means of something called, appropriately enough, the CPS transformation. Many Scheme systems in fact work like that: the program is parsed, the CPS transformation is applied to it, and then the CPS abstract syntax tree is either interpreted or translated to object code.
This is how you'd implement call/cc
in continuation-passing style (using continuation
as the name of the extra argument for the continuation):
(define (call/cc-cps proc continuation)
(proc continuation continuation))
As you should be able to see, (a) you can't implement this in direct style (the opposite of CPS), and (b) it's trivial in CPS. call/cc
is just a procedure that takes another procedure as its argument and the (obligatory) continuation, and calls that procedure with the continuation both as its argument and its continuation.
J.M. Siskind's research statement states:
Stalin is an optimizing compiler for Scheme that performs whole-program static analysis and uses the results of that analysis to generate extremely efficient code. Stalin utilizes a large collection of static-analysis techniques. It performs a novel form of polyvariant flow analysis that uses iterated monovariant flow analysis to perform flow-directed splitting: cloning of specialized copies of procedures and per-call-site assignment of targets to such clones. It uses the results of flow analysis to perform life-time analysis, escape analysis, points-to analysis, and must-alias analysis. These analyses support a novel form of lightweight closure conversion that eliminates most closure slots, using techniques such as variable globalization and localization, compresses the static backchain, and usually eliminates most closures from programs. It also uses the above analyses to support flow-directed region-based storage management, where run-time garbage collection is replaced with static allocation and deallocation on a per-abstract-value and per-program-point basis. It also performs flow-directed lightweight CPS conversion, using extensions of the techniques pioneered with Screamer, to support extremely efficient first-class continuations. Finally, it supports flow-directed inlining and low-level representation selection to choose the implementation (or nonimplementation) of tags, tag checking, and tag dispatching on a per-abstract-value and per-program-point basis. This eliminates most run-time tags, tag checking, tagging, tag stripping, tag dispatching, boxing, and unboxing from programs. These analyses and optimizations allow Stalin to generate extremely efficient code that outperforms all other Scheme compilers by factors ranging between two and one hundred, particularly for numerically intensive code. Stalin often generates code that outperforms handwritten c and Fortran code.
I was able to find the following very interesting paper on closures/function calls implementation: Flow-Directed Lightweight Closure Conversion. I've also emailed the author to ask about the papers on the other topics, which are mentioned as to be written in the closure conversion paper:
Siskind, J. M. 2000a. Flow-directed lightweight CPS conversion. In preparation.
Siskind, J. M. 2000b. Flow-directed polyvariance. In preparation.
Siskind, J. M. 2000c. Flow-directed representation selection. In preparation.
Siskind, J. M. 2000d. Flow-directed storage management. In preparation
Unfortunately, he never got around to writing those papers. My question to you is: are there any alternative or related papers that cover these topics? I'm very interested to learn how Stalin (or other compilers) can compile such a high level language as Scheme that is garbage collected, dynamically typed, supports first class functions, and even first class continuations, can be statically compiled to such efficient code.
R. Kent Dybvig's publications list.
Edit: A good introduction to Chez Scheme is his ICFP presentation and the paper that went along with that. Some of the papers relate to Scheme specifically (macros, multiple-values, continuations) and some are more broadly applicable (Register Allocation Using Lazy Saves, Eager Restores, and Greedy Shu?ing).
In Haskell, like in many other functional languages, the function foldl
is defined such that, for example, foldl (-) 0 [1,2,3,4] = -10
.
This is OK, because foldl (-) 0 [1, 2,3,4]
is, by definition, ((((0 - 1) - 2) - 3) - 4)
.
But, in Racket, (foldl - 0 '(1 2 3 4))
is 2, because Racket "intelligently" calculates like this: (4 - (3 - (2 - (1 - 0))))
, which indeed is 2.
Of course, if we define auxiliary function flip, like this:
(define (flip bin-fn)
(lambda (x y)
(bin-fn y x)))
then we could in Racket achieve the same behavior as in Haskell: instead of (foldl - 0 '(1 2 3 4))
we can write: (foldl (flip -) 0 '(1 2 3 4))
The question is: Why is foldl
in racket defined in such an odd (nonstandard and nonintuitive) way, differently than in any other language?
The Haskell definition is not uniform. In Racket, the function to both folds have the same order of inputs, and therefore you can just replace foldl
by foldr
and get the same result. If you do that with the Haskell version you'd get a different result (usually).
This has the nice byproduct where you're encouraged to choose either foldl
or foldr
according to their semantic differences. My guess is that with Haskell's order you're likely to choose according to the operation. You have a good example for this: you've used foldl
because you want to subtract each number -- and that's such an "obvious" choice that it's easy to overlook the fact that foldl
is usually a bad choice in a lazy language.
Another difference is that the Haskell version is more limited than the Racket version in the usual way: it operates on exactly one input list, whereas Racket can accept any number of lists. This makes it more important to have a uniform argument order for the input function).
Finally, it is wrong to assume that Racket diverged from "many other functional languages", since folding is far from a new trick, and Racket has roots that are far older than Haskell (or these other languages). The question can therefore go the other way: why is Haskell's foldl
defined in a strange way? (And no, (-)
is not a good excuse.)
"differently than in any other language"
As a counter-example, Standard ML (ML is a very old and influential functional language)'s foldl
also works this way: http://www.standardml.org/Basis/list.html#SIG:LIST.foldl:VAL
Racket's foldl
and foldr
(and also SRFI-1's fold
and fold-right
) have the property that
(foldr cons null lst) = lst
(foldl cons null lst) = (reverse lst)
I speculate the argument order was chosen for that reason.
From the Racket documentation, the description of foldl
:
(foldl proc init lst ...+) ? any/c
Two points of interest for your question are mentioned:
the input lsts are traversed from left to right
And
foldl processes the lsts in constant space
I'm gonna speculate on how the implementation for that might look like, with a single list for simplicity's sake:
(define (my-foldl proc init lst)
(define (iter lst acc)
(if (null? lst)
acc
(iter (cdr lst) (proc (car lst) acc))))
(iter lst init))
As you can see, the requirements of left-to-right traversal and constant space are met (notice the tail recursion in iter
), but the order of the arguments for proc
was never specified in the description. Hence, the result of calling the above code would be:
(my-foldl - 0 '(1 2 3 4))
> 2
If we had specified the order of the arguments for proc
in this way:
(proc acc (car lst))
Then the result would be:
(my-foldl - 0 '(1 2 3 4))
> 10
My point is, the documentation for foldl
doesn't make any assumptions on the evaluation order of the arguments for proc
, it only has to guarantee that constant space is used and that the elements in the list are evaluated from left to right.
As a side note, you can get the desired evaluation order for your expression by simply writing this:
(- 0 1 2 3 4)
> 10
In "The Scheme Programming Language" by Kent Dybvig (4th edition) section 3.4, he describes very clearly "what" continuation passing style is. For the "why" he gives two reasons:
1) pass more than one result to its continuation, because the procedure that implements the continuation can take any number of arguments.
2)CPS also allows a procedure to take separate continuations ..., which may accept different numbers of arguments.
Since the first reason can also be done using the values procedure and the second using case-lambda I'm not clear the advantages of using continuation passing style. Could someone show me some examples of where continuation passing style is appropriate, where it makes the code either better or clearer etc.
Dybvig uses the explicit continuations in this section to motivate having call/cc
as part of the language. The main point is made near the end of the section when he mentions that writing code without it requires a global tranformation of all code that is used, including functions that you call. So in Scheme you usually build your own construct using macros, and continuations are one of these useful constructs -- but you cannot implement them via macros since they implement only local transformations.
But using a CPS style directly can still be useful: for example, as he mentions, you could write a function that has more than one continuation, possibly with different arrities -- like a parsing function that receives a single-input function to send a parses value to and a nullary failure function to call when parsing fail (and this function might abort with an error or backtrack and try using other parsing rules). Another possible use is when you want to control exactly what goes into the continuation rather than letting call/cc
grab the full context.
There also the obvious case of writing code in a language that has no first-class continuation, making CPSed code your only choice. An example of that would be lots of node.js programs that use IO and pretty much force you to write code in explicit CPS.
Since the first reason can also be done using the values procedure and the second using case-lambda I'm not clear the advantages of using continuation passing style.
...except that the definition of values
specifies that it calls its continuation with multiple arguments.
My favorite example of a problem where continuation passing style is helpful is writing pattern matchers. This is a kind of macro that's like case
on steroids; it takes a value and tries to match its structure against a sequence of patterns built from pairs, symbols (standing for variables) and non-symbol atoms (standing for values). If a match succeeds, then it binds the identifiers in the pattern to the corresponding subparts of the value, and executes a consequent for that pattern. If it fails, then it tries the next pattern.
It's pretty straightforward to write this sort of macro in a form of continuation passing style, using two different continuations to represent "what to do if a match succeeds" (the success continuation) and "what to do if a match fails" (the failure continuations).
Take this (simplified) fragment of a pattern matching macro I once wrote (I apologize if you don't know syntax-case or syntax-rules; and since I adapted it on the fly, I sure hope it works too!). I'm going to focus on the rule that matches a pair pattern. This is a pattern that consists of a pair of two patterns, a head pattern and a tail pattern; it matches pairs whose head matches the head pattern and whose tail matches the tail-pattern.
;;;
;;; Outer "driver" macro; the meat is in pmatch-expand-pattern.
;;;
(define-syntax pmatch
(syntax-rules ()
((pmatch value-expr (pattern . exprs) . clauses)
(let* ((value value-expr)
(try-next-clause
(lambda () (pmatch value . clauses))))
(pmatch-expand-pattern pattern
value
;; success-k
(begin . exprs)
;; failure-k
(try-next-clause))))))
(define-syntax pmatch-expand-pattern
(lambda (stx)
(syntax-case stx ()
;; Cases for constants and quoted symbols omitted, but they're trivial.
;; Match a pair pattern. Note that failure-k is expanded three times;
;; that's why pmatch encapsulates its expansion inside a thunk!
((pmatch-expand-pattern (head-pat . tail-pat) value success-k failure-k)
(syntax
(if (pair? value)
(pmatch-expand-pattern head-pat
(car value)
;; If we successfully match the head, then
;; the success continuation is a recursive
;; attempt to match the tail...
(pmatch-expand-pattern tail-pat
(cdr value)
success-k
failure-k)
failure-k))
failure-k))
;; Match an identifier pattern. Always succeeds, binds identifier
;; to value
((pmatch-expand-pattern identifier value success-k failure-k)
(identifier? (syntax identifier))
(syntax (let ((identifier value)) success-k)))
)))
Note the success-k and failure-k subforms in the pmatch-expand-pattern
macro expressions. These represent expressions that are being used as the "continuation," in a slightly loose term, for the pattern matcher. The success continuation is used when the pattern under consideration matches the value under consideration; the failure continuation is used when it doesn't. The success continuation is, depending on whether we've matched all of the current top-level pattern yet, either an expression that will match the rest of the pattern, or the consequent that we execute when a pattern is done matching. The failure continuations are used when a pattern fails to match, in order to backtrack to the next choice point.
As I mentioned, the term "continuation" is being used a bit loosely in the code above, since we're using expressions as continuations. But this is just a detail about how to implement this as a macro?the algorithm could be implemented purely at runtime with actual procedures as the continuations. (Also, the try-next-clause
procedures are continuations in the literal sense.)
I have some experience with python, I asked for a new language, and said that i am having a hard time implementing what I have learned. they suggested I learn SICP. Saying it uses a great language and teaches great programming fundamentals.
But I notice it was published in 1984. Do you guys recommend it, or have I been trolled? :p
Thanks.
Yes, SICP is still a great book! The second edition, which is available online, is of 1996. Although, if you just want to learn Scheme instead of fundamental computer science, you might be better of with Teach Yourself Scheme in Fixnum Days.
I strongly encourage you to check out the book How to Design Programs. It focuses on the fundamentals of programming, not on the specific language, but it also uses Scheme as its language. It's also available free online.
You can also check out the current release of the second edition, which is in preparation (or the less-stable but more up-to-date current draft).
SICP is one of the best books I've read for learning how to write programs well. I never used scheme outside of the work I did in that book, but it's well worth your time.
Firstly, you're loooking at the first edition. The second edition is from 1996.
You should VERY MUCH tackle the book. I've gone through about half and my mind is blown. I can't begin to explain how amazing it is. Not only will you develop an appreciation for elegance in programming, but you'll see the line blurred between coding and computer science.
Don't approach this book like a programming book. Approach it as if you want to learn the fundamentals of computation and computer science using programming as a means of expression.
I'm used to lazy evaluation from Haskell, and find myself getting irritated with eager-by-default languages now that I've used lazy evaluation properly. This is actually quite damaging, as the other languages I use mainly make lazily evaluating stuff very awkward, normally involving the rolling out of custom iterators and so forth. So just by acquiring some knowledge, I've actually made myself less productive in my original languages. Sigh.
But I hear that AST macros offer another clean way of doing the same thing. I've often heard statements like 'Lazy evaluation makes macros redundant' and vice-versa, mostly from sparring Lisp and Haskell communities.
I've dabbled with macros in various Lisp variants. They just seemed like a really organized way of copy and pasting chunks of code around to be handled at compile time. They certainly weren't the holy grail that Lispers like to think it is. But that's almost certainly because I can't use them properly. Of course, having the macro system work on the same core data structure that the language itself is assembled with is really useful, but it's still basically an organized way of copy-and-pasting code around. I acknowledge that basing a macro system on the same AST as the language that allows full runtime alteration is powerful.
What I want to know is, is how can macros be used to concisely and succinctly do what lazy-evaluation does? If I want to process a file line by line without slurping up the whole thing, I just return a list that's had a line-reading routine mapped over it. It's the perfect example of DWIM (do what I mean). I don't even have to think about it.
I clearly don't get macros. I've used them and not been particularly impressed given the hype. So there's something I'm missing that I'm not getting by reading over documentation online. Can someone explain all of this to me?
Lazy evaluation makes macros redundant
This is pure nonsense. (Not your fault; I've heard it before.) It's true that you can use macros to change the order, context, etc of expression evaluation, but that's the most basic use of macros, and it's really not convenient to simulate a lazy language using ad hoc macros instead of functions. So if you came at macros from that direction, you would indeed be disappointed.
Macros are for extending the language with new syntactic forms. Some of the specific capabilities of macros are
Macros that do (1) can be pretty simple. For example, in Racket, the exception-handling form, with-handlers
, is just a macro that expands into call-with-exception-handler
, some conditionals, and some continuation code. It's used like this:
(with-handlers ([(lambda (e) (exn:fail:network? e))
(lambda (e)
(printf "network seems to be broken\n")
(cleanup))])
(do-some-network-stuff))
The macro implements the notion of "predicate-and-handler clauses in the dynamic context of the exception" based on the primitive call-with-exception-handler
which handles all exceptions at the point they're raised.
A more sophisticated use of macros is an implementation of an LALR(1) parser generator. Instead of a separate file that needs pre-processing, the parser
form is just another kind of expression. It takes a grammar description, computes the tables at compile time, and produces a parser function. The action routines are lexically-scoped, so they can refer to other definitions in the file or even lambda
-bound variables. You can even use other language extensions in the action routines.
At the extreme end, Typed Racket is a typed dialect of Racket implemented via macros. It has a sophisticated type system designed to match the idioms of Racket/Scheme code, and it interoperates with untyped modules by protecting typed functions with dynamic software contracts (also implemented via macros). It's implemented by a "typed module" macro that expands, type-checks, and transforms the module body as well as auxiliary macros for attaching type information to definitions, etc.
FWIW, there's also Lazy Racket, a lazy dialect of Racket. It's not implemented by turning every function into a macro, but by rebinding lambda
, define
, and the function application syntax to macros that create and force promises.
In summary, lazy evaluation and macros have a small point of intersection, but they're extremely different things. And macros are certainly not subsumed by lazy evaluation.
Lazy evaluation can substitute for certain uses of macros (those which delay evaluation to create control constructs) but the converse isn't really true. You can use macros to make delayed evaluation constructs more transparent -- see SRFI 41 (Streams) for an example of how: http://download.plt-scheme.org/doc/4.1.5/html/srfi-std/srfi-41/srfi-41.html
On top of this, you could write your own lazy IO primitives as well.
In my experience, however, pervasively lazy code in a strict language tends to introduce an overhead as compared to pervasively lazy code in a runtime designed to efficiently support it from the start -- which, mind you, is an implementation issue really.
Laziness is denotative, while macros are not. More precisely, if you add non-strictness to a denotative language, the result is still denotative, but if you add macros, the result isn't denotative. In other words, the meaning of an expression in a lazy pure language is a function solely of the meanings of the component expressions; while macros can yield semantically distinct results from semantically equal arguments.
In this sense, macros are more powerful, while laziness is correspondingly more well-behaved semantically.
Edit: more precisely, macros are non-denotative except with respect to the identity/trivial denotation (where the notion of "denotative" becomes vacuous).
Lisp started in the late 50s of the last millennium. See RECURSIVE FUNCTIONS OF SYMBOLIC EXPRESSIONS AND THEIR COMPUTATION BY MACHINE. Macros were not a part of that Lisp. The idea was to compute with symbolic expressions, which can represent all kinds of formulas and programs: mathematical expressions, logical expressions, natural language sentences, computer programs, ...
Later Lisp macros were invented and they are an application of that above idea to Lisp itself: Macros transform Lisp (or Lisp-like) expressions to other Lisp expressions using the full Lisp language as a transformation language.
You can imagine that with Macros you can implement powerful pre-processors and compilers as a user of Lisp.
The typical Lisp dialect uses strict evaluation of arguments: all arguments to functions are evaluated before a function gets executed. Lisp also has several built-in forms which have different evaluation rules. IF
is such an example. In Common Lisp IF
is a so-called special operator.
But we can define a new Lisp-like (sub-) language which uses lazy evaluation and we can write Macros to transform that language into Lisp. This is an application for macros, but by far not the only one.
An example (relatively old) for such a Lisp extension which uses macros to implement a code transformer which provides data structures with lazy evaluation is the SERIES extension to Common Lisp.
Macros can be used to handle lazy evaluation, but's just part of it. The main point of macros is that thanks to them basically nothing is fixed in the language.
If programming is like playing with LEGO bricks, with macros you can also change the shape of the bricks or the material they're built with.
Macros is more than just delayed evaluation. That was available as fexpr
(a macro precursor in the history of lisp). Macros is about program rewriting, where fexpr
is just a special case...
As an example consider that I'm writing in my spare time a tiny lisp to javascript compiler and originally (in the javascript kernel) I only had lambda with support for &rest
arguments. Now there's support for keyword arguments and that because I redefined what lambda means in lisp itself.
I can now write:
(defun foo (x y &key (z 12) w) ...)
and call the function with
(foo 12 34 :w 56)
When executing that call, in the function body the w
parameter will be bound to 56 and the z
parameter to 12 because it wasn't passed. I'll also get a runtime error if an unsupported keyword argument is passed to the function. I could even add some compile-time check support by redefining what compiling an expressions means (i.e. adding checks if "static" function call forms are passing the correct parameters to functions).
The central point is that the original (kernel) language did not have support for keyword arguments at all, and I was able to add it using the language itself. The result is exactly like if it was there from the beginning; it's simply part of the language.
Syntax is important (even if it's technically possible to just use a turing machine). Syntax shapes the thoughts you have. Macros (and read macros) give you total control on the syntax.
A key point is that code-rewriting code is not using a crippled dumbed down brainf**k-like crap as C++ template metaprogramming (where just making an if
is an amazing accomplishment), or with a an even dumber less-than-regexp substitution engine like C preprocessor.
Code-rewriting code uses the same full-blown (and extensible) language. It's lisp all the way down ;-)
Sure writing macros is harder than writing regular code; but it's an "essential complexity" of the problem, not an artificial complexity because you're forced to use a dumb half-language like with C++ metaprogramming.
Writing macros is harder because code is a complex thing and when writing macros you write complex things that build complex things themselves. It's even not so uncommon to go up one level more and write macro-generating macros (that's where the old lisp joke of "I'm writing code that writes code that writes code that I'm being paid for" comes from).
But macro power is simply boundless.
Let's say I want to implement an event bus using a OO programming language. I could do this (pseudocode):
class EventBus
listeners = []
public register(listener):
listeners.add(listener)
public unregister(listener):
listeners.remove(listener)
public fireEvent(event):
for (listener in listeners):
listener.on(event)
This is actually the the observer pattern, but used for event-driven control flow of an application.
How would you implement this pattern using a functional programming language (such as one of the lisp flavors)?
I ask this because if one doesn't use objects, one would still need some kind of state to maintain a collection of all the listeners. More over, since the listeners collection changes over time, it would not be possible to create a pure functional solution, right?
Some remarks on this:
I am not sure how it is done, but there is something called "functional reactive programming" which is available as a library for many functional languages. This is actually more or less the observer pattern done right.
Also the observer pattern is usually used for notifying changes in state, as in the various MVC implementations. However in a functional language there is no direct way to do state-changes, unless you use some tricks such as monads to simulate the state. However if you simulate the state changes using monads you will also get points where you can add the observer mechanism inside the monad.
Judging from the code you posted it seems that you are actually doing event driven programming. So the observer pattern is a typical way to get event driven programming in Object oriented languages. So you have a goal (event driven programming) and a tool in the object oriented world (observer pattern). If you want to use the full power of functional programming you should check what other methods are available for achieving this goal instead of directly porting the tool from the object oriented world (it might not be the best choice for a functional language). Just check what other tools are available here and you will probably find something that fits your goals much better.
If the Observer pattern is essentially about publishers and subscribers then Clojure has a couple of functions that you could use:
The add-watch function takes three arguments: a reference, a watch function key, and a watch function that is called when the reference changes state.
Clearly, because of the changes in mutable state, this is not purely functional (as you clearly requested), but add-watcher
will give you a way to react to events, if that's the effect you were seeking, like so:
(def number-cats (ref 3))
(defn updated-cat-count [k r o n]
;; Takes a function key, reference, old value and new value
(println (str "Number of cats was " o))
(println (str "Number of cats is now " n)))
(add-watch number-cats :cat-count-watcher updated-cat-count)
(dosync (ref-set number-cats (inc @number-cats)))
Output:
Number of cats was 3
Number of cats is now 4
4
More over, since the listeners collection changes over time, it would not be possible to create a pure functional solution, right?
This is less of a problem - in general, whenever you'd modify an object's attribute in an imperative solution, you can compute a new object with the new value in a pure functional solution. I believe that the actual event propagation is a bit more problematic - it would have to be implemented by a function that takes the event, the whole set of potential observers plus the EventBus
, then filters out the actual observers and returns a whole new set of objects with the new states of observers computed by their event processing functions. Non-observers would of course be the same in the input and output sets.
It gets interesting if those observers generate new events in response to their on
methods (here: functions) being called - in this case you need to apply the function recursively (perhaps allowing it to take more than one event) until it produces no more events to process.
In general, the function would take an event and a set of objects and return the new set of objects with new states representing all modifications resulting from the event propagation.
TL;DR: I think that modeling event propagation in a pure functional way is complicated.
I'd suggest creating a ref which contains a set of listeners, each of which is a function that acts on an event.
Something like:
(def listeners (ref #{}))
(defn register-listener [listener]
(dosync
(alter listeners conj listener)))
(defn unregister-listener [listener]
(dosync
(alter listeners disj listener)))
(defn fire-event [event]
(doall
(map #(% event) @listeners)))
Note that you are using mutable state here, but that is OK because the problem you are trying to solve explicitly requires state in terms of keeping track of a set of listeners.
Note thanks to C.A.McCann's comment: I'm using a "ref" which stores the set of active listeners which has the nice bonus property that the solution is safe for concurrency. All updates take place protected by the STM transaction within the (dosync) construct. In this case it's possibly overkill (e.g. an atom would also do the trick) but this might come in handy in more complex situations, e.g. when you are registering/unregistering a complex set of listeners and want the update to take place in a single, thread-safe transation.
Is there a lint for Common Lisp or Chicken Scheme? Possibly something akin to C's splint, Haskell's HLint, Perl's B::Lint, etc.?
No, there is nothing like that for Common Lisp.
There's Lisp Critic:
http://www.mail-archive.com/gardeners@lispniks.com/msg00372.html
There is a static debugger for PLT Scheme, called "MrSpidey", and "bugloo" if you are using the "Bigloo" Scheme compiler, but that is all I could find. see this Stack Overflow question about static analyzers for scheme.
I have now seen several projects ending at a point where the actual configuration depended on things only available at run-time.
The typical way to configure a Java program is to read one or more property files according to some application specific rules and then take action depending on their values. At one point or another this breaks down and you need actual program logic in your configuration which then can be indicated with a flag and adding code to your application which then handles the flag.
I was wondering if a tiny Lisp configuration reader module might be a better option, where the file to be read is not a property file but a Lisp program which is then eval'ed to create a final datastructure representing the configuration. A minimal set of functions in the runtime library would then allow string manipulation and perhaps even calling into the JVM. Just think of "construct an URL based on the current hostname".
I am not interested in a full Lisp engine with bells and whistles but just a small library for this purpose which can be enclosed in even small programs without a large jar containing the Lisp engine.
So does such a library exist?
Suggestions?
Edit 2012-01-20: I initially found all the candidates undesirable, but have decided to use this as a Maven exercise on the side with the 1998 jscheme 1.4 release. Project at https://github.com/ravn/jscheme-1998
I know you want a small size and runtime. Scheme is the usual choice for easy embedding, and would be my first choice. But I have no information on that field, though. My second choice is Clojure:
A respective code with using Clojure:
import clojure.lang.RT;
import clojure.lang.Var;
import clojure.lang.Compiler;
import java.io.FileReader;
import java.io.FileNotFoundException;
public class ClojTest {
public static void main(String[] args) throws Exception {
try {
Compiler.load(new FileReader("hello.clj"));
} catch(FileNotFoundException e) { return; }
System.out.println("Message: '"+ RT.var("user", "msg").get() +"'");
// Values
int answer = (Integer) RT.var("user", "answer").get();
// Function calls
System.out.println(RT.var("user", "countdown").invoke(42));
}
}
with hello.clj
being:
(ns user)
(defn countdown [n]
(reduce + (range 1 (inc n))))
(def msg "Hello from Clojure!")
(def answer (countdown 42))
Running time java ClojTest
for a while yields in an average of 0.75 seconds. Clojure compiling the script has quite a penalty!
Good, much smaller solution is an embedded Scheme for Java. Out of many implementations, I found and tested JScheme. (API looks okay: http://jscheme.sourceforge.net/jscheme/doc/api/index.html)
A simple main program in Java:
import jscheme.JScheme;
import jscheme.SchemeException;
import java.io.*;
public class SchemeTest {
public static void main(String[] args) {
JScheme js = null;
try {
js = new JScheme();
js.load(new FileReader("config.scm"));
} catch (FileNotFoundException e) { return; }
System.out.println("Message: '" + js.eval("msg") + "'");
// Values
int answer = (Integer) js.eval("answer");
// Function calls
System.out.println(js.call("countdown", 42));
}
}
And an example config.scm
:
(define (countdown x)
(define (loop x acc)
(if (= x 0)
acc
(loop (- x 1) (+ acc x))))
(loop x 0))
;;; config variables
(define msg "Hello from JScheme!")
;; tail calls are optimized as required
(define answer (countdown 42))
The scheme is being interpreted at startup every time, so this is good choice for configurations. Advantages to JScheme include:
Benchmark update: this code runs in 0.13 seconds time. Compared to the Clojure version's time this is pretty fast.
Try SISC, it is a reasonably small (300kb jar) Scheme implementation with no bells and whistles. Glueing it with Java is trivial, and an execution speed is quite impressive for a pure interpreter.
Clojure is excellent, it is embeddable and has very good interoperability for calling Java libraries. However it is not particularly small (you get a full compiler and quite a decent runtime library included). Still worth considering if you have a broader requirement for this kind of functionality - I've found Clojure to work as an excellent dynamic "glue" for Java code.
Otherwise, your best bet is probably a tiny embedded Scheme interpreter.
It may be possible to use the early (1998) version of JScheme at this link, which is only about a 30k jar file: http://norvig.com/jscheme.html
Otherwise, it's probably possible to write something even more minimal in a few hundred lines of Java.... it's probably only a weekend project considering how small the core of Scheme is. The following page is quite interesting if you want to write a mini-interpreter for Scheme: http://archives.evergreen.edu/webpages/curricular/2000-2001/fofc00/eval.html
The intent of my question is not to start a flame war, but rather to determine in what circumstances each language is "the best tool for the job."
I have read several books on Clojure (Programming Clojure, Practical Clojure, The Joy of Clojure, and the Manning Early Access edition of Clojure in Action), and I think it is a fantastic language. I am currently reading Let Over Lambda which mostly deals with Common Lisp macros, and, it too, is a very interesting language.
I am not a Lisp expert (more of a newbie), but this family of languages fascinates me, as does functional programming, in general.
Advantages of Clojure (and disadvantages of "others"):
Runs on the JVM.
The JVM is a very stable, high-performance language environment that pretty well meets Sun's dream of "Write once, run [almost] anywhere". I can write code on my Macbook Pro, compile it into an executable JAR file, and then run it on Linux and Microsoft Windows with little additional testing.
The (Hotspot, and other) JVM supports high-quality garbage collection and very performant just-in-time compilation and optimization. Where just a few years ago, I wrote everything that had to run fast in C, now I do not hesitate to do so in Java.
Standard, simple, multithreading model. Does Common Lisp have a standard multithreading package?
Breaks up the monotony of all those parentheses with []
, {}
, and #{}
, although Common Lisp experts will probably tell me that with reader macros, you can add those to CL.
Disadvantages of Clojure:
Advantages of Others (Common Lisp, in particular) (and disadvantages of Clojure):
User-definable reader macros.
Other advantages?
Thoughts? Other differences?
My personal list of reasons for preferring Clojure to other Lisps (p.s. I still think all Lisps are great!):
Runs on the JVM - hence gets automatic access to the fantastic engineering in the JVM itself (advanced garbage collection algorithms, HotSpot JIT optimisation etc.)
Very good Java interoperability - provides compatibility with the huge range of libraries in the Java/JVM language ecosystem. I have used Clojure as a "glue" language to connect different Java libraries with good effect. As I also develop a lot of Java code it is helpful for me that Clojure integrates well with Java tooling (e.g. I use Maven, Eclipse with Counterclockwise plugin for my Clojure development)
Nice syntax for vectors [1 2 3], maps {:bob 10, :jane 15} and sets #{"a" "b" "c"} - I consider these pretty essential tools for modern programming (in addition to lists of course!)
I personally like the use of square brackets for binding forms: e.g. (defn foo [a b] (+ a b))
- I think it makes code a bit clearer to read.
Emphasis on lazy, functional programming with persistent, immutable data structures - in particular all the core Clojure library is designed to support this by default
Excellent STM implementation for multi-core concurrency. I believe Clojure has the best concurrency story of any language at the moment (see this video for more elaboration by Rich Hickey himself)
It's a Lisp-1 (like Scheme), which I personally prefer (I think in a functional language it makes sense to keep functions and data in the same namespace)
Keep in mind that Clojure is a language and an implementation (usually on the JVM). Common Lisp is a language with more than ten different implementations. So we have a category mismatch right here. You might for example compare Clojure with SBCL.
Generally:
a version of Common Lisp runs on the JVM: ABCL
most other Common Lisp implementation don't
most CL implementations have multitasking capabilities, a library provides a common interface
Common Lisp has syntax for arrays. Syntax for other data types can be written by the user and are provided by various libraries.
Common Lisp supports neither tail call optimization nor continuations. Implementations provide TCO and libraries provide some form of continuations.
Here's a good video with a comparison of Scheme (Racket mostly) and Clojure.
To be fair, Racket has syntax sugar (additional reader stuff) for data types too (#hash, #, square brackets, etc.)
Plus, Clojure's only way to make a proper tail call is to use recur
, that's the downside of compiling to JVM.
Note that
recur
is the only non-stack-consuming looping construct in Clojure. There is no tail-call optimization and the use of self-calls for looping of unknown bounds is discouraged.recur
is functional and its use in tail-position is verified by the compiler. (Special Forms).
An important difference between Clojure and Common Lisp is that Clojure is more prescriptive about functional programming. Clojure's philosophy, idioms, and to some degree language/libraries strongly encourage and sometimes insist that you program in a functional way (no side effects, no mutable state).
Common Lisp definitely supports functional programming, but it also allows mutable state and imperative programming.
Of course, there are a number of benefits to functional programming, in the area of concurrency and otherwise. But all else being equal, it is also good to have the choice of which approach you want to use for each situation. Clojure doesn't completely prohibit imperative programming, but it is less accommodating of that style than Common Lisp.
In this video, Rich Hickey introduced Clojure for Lisp programmers.
At time 01:10:42, he talked about nil/false/end-of-sequence/'() among Clojure/Common Lisp/Scheme/Java. He said: "Scheme has true and false, but they are broken."
I don't understand why he said that and why does he consider it's "broken"?
It strikes me you'd rather see it from the horse's mouth, so here's a choice extract from a message Rich posted:
Scheme #t is almost completely meaningless, as Scheme conditionals test for #f/non-#f, not #f/#t. I don't think the value #f has much utility whatsoever, and basing conditionals on it means writing a lot of (if (not (null? x))... where (if x... will do in Clojure/CL, and a substantial reduction in expressive power when dealing with sequences, filters etc.
The links in that message are also worthwhile, though the second one may be a bit poetic.
From the chart you posted I'd assume it's because Scheme unlike all the other languages in the chart uses something other than nil
or false
for end-of-seq
. Since '()
is non-#f
it would be a truthy value in a conditional, but acts as a falsy value for end of sequence checks.
In Scheme any value (apart from #f which is False) can be used as True in a conditional test. More info here.
Update Forget this answer, since it's the same for Clojure of course. I don't like this implicit truth for all values that are not false, for example in (println (if 1 "true" "false")). Personally I would consider that broken but Rich is probably thinking of something else.
I undertook an interview last week in which I learnt a few things about python I didn't know about (or rather realise how they could be used), first up and the content of this question is the use of or
for the purposes of branch control.
So, for example, if we run:
def f():
do something. I'd use ... but that's actually a python object.
def g():
something else.
f() or g()
Then if f()
evaluates to some true condition then that value is returned, if not, g()
is evaluated and whatever value it produces is returned, whether true or false. This gives us the ability to implement an if
statement using or
keywords.
We can also use and
such that f() and g()
will return the value of g()
if f()
is true and the value of f()
if g()
is false.
I am told that this (the use of or
for branch control) is a common thing in languages such as lisp (hence the lisp tag). I'm currently following SICP learning Scheme, so I can see that (or (f x) (g x))
would return the value of (g x)
assuming (f x)
is #f
.
I'm confused as to whether there is any advantage of this technique. It clearly achieves branch control but to me the built in keywords seem more self-explanatory.
I'm also confused as to whether or not this is "functional"? My understanding of pure functional programming is that you use constructs like this (an example from my recent erlang experiments):
makeeven(N,1) -> N+1;
makeeven(N,0) -> N;
makeeven(N) -> makeeven(N,N rem 2).
Or a better, more complicated example using template meta-programming in C++ (discovered via cpp-next.com). My thought process is that one aspect of functional programming boils down the use of piecewise defined functions in code for branch control (and if you can manage it, tail recursion).
So, my questions:
I apologise for jumping over so many languages; I'm simply trying to tie together my understanding across them. Feel free to answer in any language mentioned. I also apologise if I've misunderstood any definitions or am missing something vital here, I've never formally studied computer science.
Your interviewers must have had a "functional background" way back. It used to be common to write
(or (some-condition) (some-side-effect))
but in CL and in Scheme implementation that support it, it is much better written with unless
. Same goes for and
vs when
.
So, to be more concrete -- it's not more functional (and in fact the common use of these things was for one-sided conditionals, which are not functional to begin with); there is no advantage (which becomes very obvious in these languages when you know that things are implemented as macros anyway -- for example, most or
and and
implementations expand to an if
); and any possible use cases should use when
and unless
if you have them in your implementation, otherwise it's better to define them as macros than to not use them.
Oh, and you could use a combination of them instead of a two sided if
, but that would be obfuscatingly ugly.
I'm not aware of any issues with the way this code will execute, but it is confusing to read for the uninitiated. In fact, this kind of syntax is like a Python anti-pattern: you can do it, but it is in no way Pythonic.
condition and true_branch or false_branch
works in all languages that have short circuting logical operators. On the other hand it's not really a good idea to use in a language where values have a boolean value.
For example
zero = (1==0) and 0 or 1 # (1==0) -> False
zero = (False and 0) or 1 # (False and X) -> X
zero = 0 or 1 # 0 is False in most languages
zero = False or 1
zero = 1
As Eli said; also, performing control flow purely with logical operators tends to be taught in introductory FP classes -- more as a mind exercise, really, not something that you necessarily want to use IRL. It's always good to be able to translate any control operator down to if
.
Now, the big difference between FPs and other languages is that, in more functional languages, if
is actually an expression, not a statement. An if
block always has a value! The C family of languages has a macro version of this -- the test? consequent : alternative
construct -- but it gets really unreadable if you nest more expressions.
Prior to Python 2.5, if you want to have a control-flow expression in Python you might have to use logical operators. In Python 2.5, though, there is an FP-like if-expression syntax, so you can do something like this:
(42 if True else 7) + 35
See PEP 308
You only mention the case where there are exactly 2 expressions to evaluate. What happens if there are 5?
;; returns first true value, evaluating only as many as needed
(or (f x) (g x) (h x) (i x) (j x))
Would you nest if-statements? I'm not sure how I'd do this in Python. It's almost like this:
any(c(x) for c in [f, g, h, i, j])
except Python's any
throws away the value and just returns True
. (There might be a way to do it with itertools.dropwhile
, but it seems a little awkward to me. Or maybe I'm just missing the obvious way.)
(As an aside: I find that Lisp's builtins don't quite correspond to what their names are in other languages, which can be confusing. Lisp's IF
is like C's ternary operator ?:
or Python's conditional expressions, for example, not their if-statements. Likewise, Lisp's OR
is in some ways more like (but not exactly like) Python's any()
, which only takes 2 expressions. Since the normal IF
returns a value already, there's no point in having a separate kind of "if" that can't be used like this, or a separate kind of "or" that only takes two values. It's already as flexible as the less common variant in other languages.)
I happen to be writing code like this right now, coincidentally, where some of the functions are "go ask some server for an answer", and I want to stop as soon as I get a positive response. I'd never use OR
where I really want to say IF
, but I'd rather say:
(setq did-we-pass (or (try-this x)
(try-that x)
(try-some-other-thing x)
(heck-maybe-this-will-work x))
than make a big tree of IFs. Does that qualify as "flow control" or "functional"? I guess it depends on your definitions.
It may be considered "functional" in the sense of style of programming that is/was preferred in functional language. There is nothing functional in it otherwise.
It's just syntax.
It may be sometimes more readable to use or, for example:
def foo(bar=None):
bar = bar or []
...
return bar
def baz(elems):
print "You have %s elements." % (len(elems) or "no")
You could use bar if bar else []
, but it's quite elaborate.
Some languages (Haskell, Clojure, Scheme, etc.) have lazy evaluation. One of the "selling points" of lazy evaluation is infinite data structures. What is so great about that? What are some examples of cases where being able to deal with infinite data structures is clearly advantageous?
Here are two examples, one big and one small:
Why Functional Programming Matters by John Hughes has a good example, of a chess game. The move tree for a chess game is not actually infinite, but its big enough that it might as well be infinite (call it "near-infinite"). In a strict language you can't actually treat it as a tree, because there isn't enough room to store the whole tree. But in a lazy language you just define the tree and then define a "nextMove" function to traverse it as far as necessary. The lazy evaluation mechanism takes care of the details.
The small example is simply associating an index number with every item in a list, so that ["foo", "bar", "baz"] becomes [(1,"foo"), (2,"bar"), (3,"baz")]. In a strict language you need a loop that keeps track of the last index and checks to see if you are at the end. In Haskell you just say:
zip [1..] items
The first argument to zip is an infinite list. You don't need to work out how long it needs to be ahead of time.
A few advantages I can think of:
I was going to comment regarding @knivil's Scheme. Instead I'll just throw this up as another answer.
Lazy data structures aren't the only way to accomplish most tasks. This might irritate Pythonistas. But I believe it's best when programmers get to choose which techniques they use. Lazy techinques are powerful and elegant.
Knivil mentioned using Scheme's iota
. Look how easy it is to write the full method (with all 3 args), relying on laziness:
iota count begin step = let xs = begin:map (+step) xs
in take count xs
-- or, alternately
iota count begin step = take count $ map ((+begin).(*step)) [0..]
I could also write length
for non-empty lists by abusing laziness:
len = fst . last . zip [1..]
-- or even handling empty lists
len = fst . last . zip [0..] . (undefined:)
Consider the powerful and elegant iterate
function defined in Prelude.
iterate f x = x : iterate f (f x)
It creates the infinite list [x, f x, f (f x), f (f (f x)), ...]
. I could have written iota
in terms of iterate
:
iota count begin step = take count $ iterate (+step) begin
The lazy approach is an elegant way to program. It's not the only way, and people used to C or Java will certainly cry out "but I don't need laziness, I can just _", and they are correct. If your language is Turing-complete, it can be done. But laziness can be oh so elegant.
There is the canonical pure memoization strategy:
fib = (map fib' [0..] !!)
where
fib' 0 = 0
fib' 1 = 1
fib' n = fib (n-1) + fib (n-2)
We map the fib'
function over an infinite list to construct a table of all the values of fib
. Voila! Cheap, easy memoization.
Of course, this has lookup time linear in the argument. You can replace it with an infinite trie to get logarithmic lookup time. cf. data-inttrie.
Well, I had a nice use case for that last month. I needed a generator for unique names when copying objects. That means, the generator takes the original name X
, and generates a new name for the copy. It does that by appending a text like
X - copy
X - copy (2)
X - copy (3)
...
as long as the name is not used within the set of objects within the same group. Using an "infinite data structure" (an infinite array of strings) for that instead of a simple loop has one advantage: you can separate the name generating part completely from the test if the name is already in use. So I could reuse the generator function for different types of objects where the in-use test is slightly different for each object type.
I've been getting more into Lisp and Lispy languages lately, and I'm finding them quite powerful.
One thing I've been reading all over the net is that a benefit of writing in Lisp, Clojure, etc, is that you can edit your program "while it's running".
Perhaps I'm missing something, but what is the point?
Sure, it might save a few seconds, but is that all? Whenever I make a change to my program I just stop it then start it again, and that has been working fine for decades.
There must be a reason other than just saving time -- what is it?
Can someone give me a good case study that will make me drool over this feature? :)
Looking forward to drooling!
There must be a reason other than just saving time -- what is it?
No, there isn't. I mean, there never is: the whole reason to use a computer at all is to save time. There's nothing a computer can do that you can't do by hand. It just takes a little longer.
In this case, I wouldn't dismiss "a few seconds", given that it's one of the things I do more often than anything else, all day long, for my entire programming career. A few seconds to recompile, a few seconds to re-run, several seconds to recreate the state my program had the previous time -- even on a fast workstation, it can easily be a minute between iterations. (It used to be much worse, but faster hardware has only made it less-awful, not good. Whole-file-or-worse recompiles are I/O-bound, and may never* match the speed of more granular compilation.)
In Lisp, recompiling a single function in an already-running process is almost instantaneous (I've never seen it even 0.1 sec, even on my 5-year-old laptop), and restarts mean I don't have to recreate my state, even when something signals.
Here's a tool that gives me over a 100x speedup of one of the slowest and most common things I do as a programmer. I don't know what else you'd need. We can probably make up some reasons, but if this isn't reason enough I don't know what would be. Um, it's also pretty cool? :-)
(* Whenever somebody says "never" about something involving technology, that person invariably ends up looking like a complete moron 2 years later, and despite Lisp's longevity, I am sure to be no exception.)
There are some extremely cool use cases. One example is in GUI programming - I saw this while developing a GUI app in real time as it was running beside my Emacs: I added code for a new button and hit "C-c C-c" to compile that single function, and the button just appeared in the window! Didn't have to close and reopen the app. Then I began tweaking widgets and manipulating the layout, and the open window would instantly rearrange itself - buttons would move around, new text fields would just pop into being, etc. as soon as I executed each little change I'd made.
Another example is an excellent screencast about the Clojure OpenGL library "Penumbra" where the programmer creates a 3D tetris game in real time. He starts with an empty OpenGL window next to his emacs. He defines a cube object - C-M-x - and it's on the screen. Runs a command to rotate it, immediately it starts spinning. Runs a loop defining 5 more cubes in different locations, pop-pop-pop-pop-pop they appear. It's all immediately responsive, the full OpenGL toolkit right there to play with. Add a new surface texture to your cube and see it appear right away. It becomes a malleable 3d world - the code dynamically modifies the existing world instead of closing and reopening the 3d canvas with every change.
Penumbra Livecoding Screencast - download HD version for best experience.
There is also a great presentation/screencast about the audio library "Overtone" for Clojure. The library is a synthesizer toolkit where you have a set of synth functions to manipulate the soundwave. During the presentation, the developer writes a bit of code that starts a tone playing. He then spends ten seconds writing a loop that plays that sound 10 times but makes the frequency higher each time, and again C-M-x and you hear it, notes ascending higher. Over the space of 20 minutes in real time he gets a song going. It looks like a ton of fun.
Other uses would be, for example: Web crawling/data mining - develop and refine algorithms for extracting information in real time, seeing the data returned at each step; Robotics programming - send commands to a robot while it's live; Facial/image recognition - with a library like OpenCV watch your changes instantly update what the library recognizes in an image/video as you're developing the code; Mathematics work (Clojure has "Incanter" for statistics); and any environment where you want to immediately see what effect your changes have had on the data you're working with.
So that's the most fun aspect of having a REPL in front of you. Things that weren't tangible, malleable, interactive, start to be. GUI design, 3D graphics, programmatic sound production, extracting and transforming data, these things normally have been done at arm's length. But with Clojure (and to some extent with other dynamic languages too) it's made to be really tangible and immediate; you see each change as soon as you write the code, and if something doesn't work or you don't get back the result you expected, you just change what you missed and re-execute it immediately.
Clojure is very aligned towards doing this. The wild thing is you can use Java libraries in real-time the same way - despite the fact that Java itself can't! So Overtone is using a Java synth library in realtime despite the fact you never could in Java, Penumbra is using the Java OpenGL bindings, etc. This is because Rich Hickey designed Clojure so it could compile to JVM bytecode on the fly. It's an amazing language - Clojure has made a huge contribution to how incredibly fun and productive programming can be.
In the real world this is mainly used in development and like many features its only worth drooling over in the right context.
*not a guarantee.
currently the idea for continual deployment is that you change one thing, build everything (or package it rather) then deploy. with the lisp model its actually possible to edit a deployed (usually a box that is recieving a mirror of real customer sessions) box while it is in deployment.
just a pedantic note. you dont actually edit running classes. you compile a new copy of the class and leave it in a known location (a var) then the next time it is used the new copy is found and used. its not really editing while running and more like new code takes effect immediately this reduces the scope of the devlopment process from programs to expressions (typically functions).
There is a marketing slogan for Lisp:
With Lisp, and its incremental development method, the cost for a change to a software system depends on the size of the change, and not the size of the whole software.
Even if we have a large software system, the cost (time, ...) for a change stays in relation to the size of a change. If we add a new method or change a new method, the effort remains in relation to the effort to edit the method, incrementally compile the the method and incrementally load the method.
In many traditional software environments, the change of a method may need a partial recompilation, a new linked executable, a restart, a reload, etc.. The larger the software is, the longer it takes.
For a human this means, we get possibly out of a state of flow. That's part of the productivity of good Lisp environments: one can make a lot of changes to a software system in a short time, once the programmer feels comfortable and enters this state of flow. I guess many have experienced this, where work gets done in a short time - opposed to times when one sits in front of a system which is unresponsive and we are faced with wait times.
Also there is little cognitive distance between us and the program we are working on. For example if you edit a class in a batch environment, you have to imagine the effect the changes have. In Lisp you edit a class and change at the same time the objects themselves. That means you change the behavior of objects directly - and not a new version of them after a batch edit-compile-link-run-test cycle.
In a Lisp system, you change a class in a CAD system and then it can be immediately active. When people ask, if Lisp works for large software teams, the answer may be that the large software team is not necessary, if you work incrementally. The problem then was/is that really good skilled software developers familiar with incremental development were (are?) rare.
In many applications there is a separate scripting language layer, sometimes for the original developers (and not for users). In Lisp this is not necessary, Lisp is its own extension language.
I remember somebody from NASA described his experience. His team implemented the soft used in a spaceship back in the 70s. And they effectively modified their soft remotely on the fly when some bugs were found.
Or imagine you have a long process taking days to execute and at the end it cannot write results because of permissions or other small problem.
Yet another example. You are in the integration phase and you have to make a lot of small changes. And again a lot of them. I dream about such a possibility in Java because currently it takes me 30-40 min to rebuild and reinstall my application (to rebuild it again in 10 min).
If you look at something like Erlang, the point is to avoid down time.
It runs on stuff like phone switches that you can't just turn off for a few seconds.
For more normal uses, though, it's a "nice to have" feature, but yeah, probably not critical.
You see real data. That is a big advantage. You then don't have to speculate.
Because you can?
Seriously, just try it out for while, and you will feel the pain when you come back to your old programming language without REPL.
Instant feedback, easy making quick tests without having to set-up a fake program state in your test fixture, Ability to inspect state of running program (what is the value of that variable). All of these are a real time savers.
It's mostly for development, where it's just a time saver.
But time savers are staggeringly important.
Once you're used to it going back to the old way feels like going from flying to swimming in tar.
In industrial systems this is used for PLC programming to alleviate downtime and unsafe conditions.
These are systems that are used on nuclear power plants, manufacturing systems, steel mills, etc. The process is always running, continuously, and down time is very expensive or unsafe. Imagine a system that is controlling the cooling of a nuclear reactor, you cannot turn that system off to deploy new code, you must be able to modify it as it is running.
This is similar to the Erlang answer for phone switch systems.
Well, imagine you need to patch a server and not stop it.
If you do this in a "typical" language, that's going to involve some heavy magic. You have to grub around 'behind' the executing code. I think it'd require patching the function tables and so forth, all in assembly and manipulating the pointers to functions. A good place for bugs.
In Lisp, the idea of updating without downtime is built into the language model. While there are some update complexities you can't get away from (how do you handle a long-running connection), it doesn't require the heavy magic of a compiled language.
Although I haven't spent significant time on it (ie anything useful), I did work out a prototype of a server in Common Lisp that would do at least some live patching over a network without downtime.
There are tons of tutorials on how to curry functions, and as many questions here at stackoverflow. However, after reading The Little Schemer, several books, tutorials, blog posts, and stackoverflow threads I still don't know the answer to the simple question: "What's the point of currying?" I do understand how to curry a function, just not the "why?" behind it.
Could someone please explain to me the practical uses of curried functions (outside of languages that only allow one argument per function, where the necessity of using currying is of course quite evident.)
edit: Taking into account some examples from TLS, what's the benefit of
(define (action kind)
(lambda (a b)
(kind a b)))
as opposed to
(define (action kind a b)
(kind a b))
I can only see more code and no added flexibility...
One effective use of curried functions is decreasing of amount of code.
Consider three functions, two of which are almost identical:
(define (add a b)
(action + a b))
(define (mul a b)
(action * a b))
(define (action kind a b)
(kind a b))
If your code invokes add
, it in turn calls action
with kind +
. The same with mul
.
You defined these functions like you would do in many imperative popular languages available (some of them have been including lambdas, currying and other features usually found in functional world, because all of it is terribly handy).
All add
and sum
do, is wrapping the call to action
with the appropriate kind
. Now, consider curried definitions of these functions:
(define add-curried
((curry action) +))
(define mul-curried
((curry action) *))
They've become considerable shorter. We just curried the function action
by passing it only one argument, the kind
, and got the curried function which accepts the rest two arguments.
This approach allows you to write less code, with high level of maintainability.
Just imagine that function action
would immediately be rewritten to accept 3 more arguments. Without currying you would have to rewrite your implementations of add
and mul
:
(define (action kind a b c d e)
(kind a b c d e))
(define (add a b c d e)
(action + a b c d e))
(define (mul a b c d e)
(action * a b c d e))
But currying saved you from that nasty and error-prone work; you don't have to rewrite even a symbol in the functions add-curried
and mul-curried
at all, because the calling function would provide the necessary amount of arguments passed to action
.
They can make code easier to read. Consider the following two Haskell snippets:
lengths :: [[a]] -> [Int]
lengths xs = map length xs
lengths' :: [[a]] -> [Int]
lengths' = map length
Why give a name to a variable you're not going to use?
Curried functions also help in situations like this:
doubleAndSum ys = map (\xs -> sum (map (*2) xs) ys
doubleAndSum' = map (sum . map (*2))
Removing those extra variables makes the code easier to read and there's no need for you to mentally keep clear what xs is and what ys is.
HTH.
You can see currying as a specialization. Pick some defaults and leave the user (maybe yourself) with a specialized, more expressive, function.
I think that currying is a traditional way to handle general n-ary functions provided that the only ones you can define are unary.
For example, in lambda calculus (from which functional programming languages stem), there are only one-variable abstractions (which translates to unary functions in FPLs). Regarding lambda calculus, I think it's easier to prove things about such a formalism since you don't actually need to handle the case of n-ary functions (since you can represent any n-ary function with a number of unary ones through currying).
(Others have already covered some of the practical implications of this decision so I'll stop here.)
Using all :: (a -> Bool) -> [a] -> Bool
with a curried predicate.
all (`elem` [1,2,3]) [0,3,4,5]
Haskell infix operators can be curried on either side, so you can easily curry the needle or the container side of the elem
function (is-element-of).
So you don't have to increase boilerplate with a little lambda.
It is very easy to create closures. From time to time i use SRFI-26. It is really cute.
In and of itself currying is syntactic sugar. Syntactic sugar is all about what you want to make easy. C for example wants to make instructions that are "cheap" in assembly language like incrementing, easy and so they have syntactic sugar for incrementation, the ++ notation.
t = x + y
x = x + 1
is replaced by t = x++ + y
Functional languages could just as easily have stuff like.
f(x,y,z) = abc
g(r,s)(z) = f(r,s,z).
h(r)(s)(z) = f(r,s,z)
but instead its all automatic. And that allows for a g bound by a particular r0, s0 (i.e. specific values) to be passed as a one variable function.
Take for example perl's sort function which takes sort sub list where sub is a function of two variables that evaluates to a boolean and list is an arbitrary list.
You would naturally want to use comparison operators (<=>) in Perl and have sortordinal = sort (<=>) where sortordinal works on lists. To do this you would sort to be a curried function.
And in fact sort of a list is defined in precisely this way in Perl.
In short: currying is sugar to make first class functions more natural.
How useful is the feature of having an atom data type in a programming language?
A few programming languages have the concept of atom or symbol to represent a constant of sorts. There are a few differences among the languages I have come across (Lisp, Ruby and Erlang), but it seems to me that the general concept is the same. I am interested in programming language design, and I was wondering what value does having an atom type provide in real life. Other languages such as Python, Java, C# seem to be doing quite well without it.
I have no real experience of Lisp or Ruby (I know the syntaxes, but haven't used either in a real project). I have used Erlang enough to be used to the concept there.
Atoms are literals, constants with their own name for value. What you see is what you get and don't expect more. The atom cat means "cat" and that's it. You can't play with it, you can't change it, you can't smash it to pieces; it's cat. Deal with it.
I compared atoms to constants having their name as their values. You may have worked with code that used constants before: as an example, let's say I have values for eye colors:
BLUE -> 1, BROWN -> 2, GREEN -> 3, OTHER -> 4
. You need to match the name of the constant to some underlying value. Atoms let you forget about the underlying values: my eye colors can simply be 'blue', 'brown', 'green' and 'other'. These colors can be used anywhere in any piece of code: the underlying values will never clash and it is impossible for such a constant to be undefined!
taken from http://learnyousomeerlang.com/starting-out-for-real#atoms
With this being said, atoms end up being a better semantic fit to describing data in your code in places other languages would be forced to use either strings, enums or defines. They're safer and friendlier to use for similar intended results.
A short example that shows how the ability to manipulate symbols leads to cleaner code: (Code is in Scheme, a dialect of Lisp).
(define men '(socrates plato aristotle))
(define (man? x)
(contains? men x))
(define (mortal? x)
(man? x))
;; test
> (mortal? 'socrates)
=> #t
You can write this program using character strings or integer constants. But the symbolic version has certain advantages. A symbol is guaranteed to be unique in the system. This makes comparing two symbols as fast as comparing two pointers. This is obviously faster than comparing two strings. Using integer constants allows people to write meaningless code like:
(define SOCRATES 1)
;; ...
(mortal? SOCRATES)
(mortal? -1) ;; ??
Probably a detailed answer to this question could be found in the book Common Lisp: A Gentle Introduction to Symbolic Computation.
Atoms (in Erlang or Prolog, etc.) or symbols (in Lisp or Ruby, etc.)—from herein only called atoms—are very useful when you have a semantic value that has no natural underlying "native" representation. They take the space of C-style enums like this:
enum days { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY }
The difference is that atoms don't typically have to be declared and they have NO underlying representation to worry about. The atom monday
in Erlang or Prolog has the value of "the atom monday
" and nothing more or less.
While it is true that you could get much of the same use out of string types as you would out of atoms, there are some advantages to the latter. First, because atoms are guaranteed to be unique (behind the scenes their string representations are converted into some form of easily-tested ID) it is far quicker to compare them than it is to compare equivalent strings. Second, they are indivisible. The atom monday
cannot be tested to see if it ends in day
for example. It is a pure, indivisible semantic unit. You have less conceptual overloading than you would in a string representation in other words.
You could also get much of the same benefit with C-style enumerations. The comparison speed in particular is, if anything, faster. But... it's an integer. And you can do weird things like have SATURDAY
and SUNDAY
translate to the same value:
enum days { SATURDAY, SUNDAY = 0, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY }
This means you can't trust different "symbols" (enumerations) to be different things and thus makes reasoning about code a lot more difficult. Too, sending enumerated types through a wire protocol is problematical because there's no way to distinguish between them and regular integers. Atoms do not have this problem. An atom is not an integer and will never look like one behind the scenes.
As a C programmer I had a problem with understanding what Ruby symbols really are. I was enlightened after I saw how symbols are implemented in the source code.
Inside Ruby code, there is a global hash table, strings mapped to integers. All ruby symbols are kept there. Ruby interpreter, during source code parse stage, uses that hash table to convert all symbols to integers. Then internally all symbols are treated as integers. This means that one symbol occupies only 4 bytes of memory and all comparisons are very fast.
So basically you can treat Ruby symbols as strings which are implemented in a very clever way. They look like strings but perform almost like integers.
When a new string is created, then in Ruby a new C structure is allocated to keep that object. For two Ruby strings, there are two pointers to two different memory locations (which may contain the same string). However a symbol is immediately converted to C int type. Therefore there is no way to distinguish two symbols as two different Ruby objects. This is a side effect of the implementation. Just keep this in mind when coding and that's all.
In Lisp symbol and atom are two different and unrelated concepts.
Usually in Lisp an ATOM is not a specific data type. It is a short hand for NOT CONS.
(defun atom (item)
(not (consp item)))
Also the type ATOM is the same as the type (NOT CONS).
Anything that is not a cons cell is an atom in Common Lisp.
A SYMBOL is a specific datatype.
A symbol is an object with a name and identity. A symbol can be interned in a package. A symbol can have a value, a function and a property list.
CL-USER 49 > (describe 'FOO)
FOO is a SYMBOL
NAME "FOO"
VALUE #<unbound value>
FUNCTION #<unbound function>
PLIST NIL
PACKAGE #<The COMMON-LISP-USER package, 91/256 internal, 0/4 external>
In Lisp source code the identifiers for variables, functions, classes and so on are written as symbols. If a Lisp s-expression is read by the reader, it does create new symbols if they are not known (available in the current package) or reuses an existing symbol (if it is available in the current package. If the Lisp reader reads a list like
(snow snow)
then it creates a list of two cons cells. The CAR of each cons cell point to the same symbol snow. There is only one symbol for it in the Lisp memory.
Also note that the plist (the property list) of a symbol can store additional meta information for a symbol. This could be the author, a source location, etc. The user can also use this feature in his/her programs.
In Scheme (and other members of the Lisp family), symbols are not just useful, they are essential.
An interesting property of these languages is that they are homoiconic. A Scheme program or expression can itself be represented as a valid Scheme data structure.
An example might make this clearer (using Gauche Scheme):
> (define x 3)
x
> (define expr '(+ x 1))
expr
> expr
(+ x 1)
> (eval expr #t)
4
Here, expr is just a list, consisting of the symbol +, the symbol x, and the number 1. We can manipulate this list like any other, pass it around, etc. But we can also evaluate it, in which case it will be interpreted as code.
In order for this to work, Scheme needs to be able to distinguish between symbols and string literals. In the example above, x is a symbol. It cannot be replaced with a string literal without changing the meaning. If we take a list '(print x), where x is a symbol, and evaluate it, that means something else than '(print "x"), where "x" is a string.
The ability to represent Scheme expressions using Scheme data structures is not just a gimmick, by the way; reading expressions as data structures and transforming them in some way, is the basis of macros.
Atoms are guaranteed to be unique and integral, in contrast to, e. g., floating-point constant values, which can differ because of inaccuracy while you're encoding, sending them over the wire, decoding on the other side and converting back to floating point. No matter what version of interpreter you're using, it ensures that atom has always the same "value" and is unique.
The Erlang VM stores all the atoms defined in all the modules in a global atom table.
There's no Boolean data type in Erlang. Instead the atoms true
and false
are used to denote Boolean values. This prevents one from doing such kind of nasty thing:
#define TRUE FALSE //Happy debugging suckers
In Erlang, you can save atoms to files, read them back, pass them over the wire between remote Erlang VMs etc.
Just as example I'll save a couple of terms into a file, and then read them back. This is the Erlang source file lib_misc.erl
(or its most interesting part for us now):
-module(lib_misc).
-export([unconsult/2, consult/1]).
unconsult(File, L) ->
{ok, S} = file:open(File, write),
lists:foreach(fun(X) -> io:format(S, "~p.~n",[X]) end, L),
file:close(S).
consult(File) ->
case file:open(File, read) of
{ok, S} ->
Val = consult1(S),
file:close(S),
{ok, Val};
{error, Why} ->
{error, Why}
end.
consult1(S) ->
case io:read(S, '') of
{ok, Term} -> [Term|consult1(S)];
eof -> [];
Error -> Error
end.
Now I'll compile this module and save some terms to a file:
1> c(lib_misc).
{ok,lib_misc}
2> lib_misc:unconsult("./erlang.terms", [42, "moo", erlang_atom]).
ok
3>
In the file erlang.terms
we'll get this contents:
42.
"moo".
erlang_atom.
Now let's read it back:
3> {ok, [_, _, SomeAtom]} = lib_misc:consult("./erlang.terms").
{ok,[42,"moo",erlang_atom]}
4> is_atom(SomeAtom).
true
5>
You see that the data is successfully read from the file and the variable SomeAtom
really holds an atom erlang_atom
.
lib_misc.erl
contents are excerpted from "Programming Erlang: Software for a Concurrent World" by Joe Armstrong, published by The Pragmatic Bookshelf. The rest source code is here.
Atoms provide fast equality testing, since they use identity. Compared to enumerated types or integers, they have better semantics (why would you represent an abstract symbolic value by a number anyway?) and they are not restricted to a fixed set of values like enums.
The compromise is that they are more expensive to create than literal strings, since the system needs to know all exising instances to maintain uniqueness; this costs time mostly for the compiler, but it costs memory in O(number of unique atoms).
In some languages, associative array literals have keys that behave like symbols.
In Python[1], a dictionary.
d = dict(foo=1, bar=2)
In Perl[2], a hash.
my %h = (foo => 1, bar => 2);
In JavaScript[3], an object.
var o = {foo: 1, bar: 2};
In these cases, foo
and bar
are like symbols, i.e., unquoted immutable strings.
[1] Proof:
x = dict(a=1)
y = dict(a=2)
(k1,) = x.keys()
(k2,) = y.keys()
assert id(k1) == id(k2)
[2] This is not quite true:
my %x = (a=>1);
my %y = (a=>2);
my ($k1) = keys %x;
my ($k2) = keys %y;
die unless \$k1 == \$k2; # dies
[1] In JSON, this syntax is not allowed because keys must be quoted. I don't know how to prove they are symbols because I don't know how to read the memory of a variable.
In Ruby, symbols are often used as keys in hashes, so often that Ruby 1.9 even introduced a shorthand for constructing a hash. What you previously wrote as:
{:color => :blue, :age => 32}
can now be written as:
{color: :blue, age: 32}
Essentially, they are something between strings and integers: in source code they resemble strings, but with considerable differences. The same two strings are in fact different instances, while the same symbols are always the same instance:
> 'foo'.object_id
=> 82447904
> 'foo'.object_id
=> 82432826
> :foo.object_id
=> 276648
> :foo.object_id
=> 276648
This has consequences both with performance and memory consumption. Also, they are immutable. Not meant to be altered once when assigned.
An arguable rule of thumb would be to use symbols instead of strings for every string not meant for output.
Although perhaps seeming irrelevant, most code-highlighting editors colour symbols differently than the rest of the code, making the visual distinction.
The problem I have with similar concepts in other languages (eg, C) can be easily expressed as:
#define RED 1
#define BLUE 2
#define BIG 1
#define SMALL 2
or
enum colors { RED, BLUE };
enum sizes { BIG, SMALL };
Which causes problems such as:
if (RED == BIG)
printf("True");
if (BLUE == 2)
printf("True");
Neither of which really make sense. Atoms solve a similar problem without the drawbacks noted above.
Atoms are like an open enum, with infinite possible values, and no need to declare anything up front. That is how they're typically used in practice.
For example, in Erlang, a process is expecting to receive one of a handful of message types, and it's most convenient to label the message with an atom. Most other languages would use an enum for the message type, meaning that whenever I want to send a new type of message, I have to go add it to the declaration.
Also, unlike enums, sets of atom values can be combined. Suppose I want to monitor my Erlang process's status, and I have some standard status monitoring tool. I can extend my process to respond to the status message protocol as well as my other message types. With enums, how would I solve this problem?
enum my_messages {
MSG_1,
MSG_2,
MSG_3
};
enum status_messages {
STATUS_HEARTBEAT,
STATUS_LOAD
};
The problem is MSG_1 is 0, and STATUS_HEARTBEAT is also 0. When I get a message of type 0, what is it? With atoms, I don't have this problem.
Atoms/symbols are not just strings with constant-time comparison :).
Symbols are not strictly necessary, since strings can be used instead. This is why Python can manage without them. Symbols may perform better since they can be compared by id, not string comparisons.
The primary use case for symbols in Lisp is probably for defining variables at runtime. Since this is not possible anyway in static languages, they are not really missed.
The secondary use case is as 'special' values or 'tags' in data structures. For this, enumerations are probably what you will use in a statically typed languages.
Possible Duplicate:
What is the single most influential book every programmer should read?
I just finished going over Abelson and Sussman?s Structure and Interpretation of Computer Programs. While it is probably not going to change my life as a programmer, it still totally deserves the "every programmer must read" status.
I enjoy rare books like this that are not focused on a particular language or framework du jour, but rather make you think hard, teach timeless principles, concepts, bend your mind, and reignite passion for the craft of programming.
Are there any other books as influential and mind-expanding as SICP?
The Art of Computer Programming by Knuth
You can also check this out What is the single most influential book every programmer should read?
"Lisp in Small Pieces" (Christian Queinnec) ISBN 0521545668 is maybe a contender
Volume 4 of Knuth is finally out http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043/ref=dp_ob_title_bk
Certainly a mind-bending book, not directly related to programming, but rather a knowledge which is simply essential: G. J. Chaitin, Algorithmic Information Theory.
SICP is a great book, but I think I would describe it as more "elegantly and ruthlessly simple", rather than mind-bending.
AMOP is a mind-bender!
The Art of Unix Programming - Eric Raymond. (free)
the practice of programming - Kernighan & Pike
Patterns Of Software - Richard P. Gabriel (free pdf for download)
Essentials of Programming Languages if you are looking for something related to SICP.
For some serious mind-bending stuff, try going through the macro looking glass with On Lisp.
People have written games for the iPhone in Scheme. Because (some) Scheme-compilers compile down to C, it was easy to mix with Objective-C and integrate with XCode.
I am aware of patches for Haskell and OCaml compilers to enable ARM/iOS-backends. But those appear unofficial and experimental/unstable.
I prefer a static haskell/ML-type type-system over Scheme's dynamic typing. Is there a stable ML/SML/Haskell compiler which generates C-code so that it can be used in a similar way as Scheme/Gambit-C?
I can't help with ML, but have you looked at JHC? JHC is a whole-program optimizing Haskell compiler that targets portable C, and iPhone support can be added by putting
[iphone]
cc=arm-apple-darwin-gcc
merge=le32
in ~/.jhc/targets.ini
More Haskell information is on the Haskell wiki and the JHC manual.
(I am not certain that this toolchain has been attempted specifically on the IPhone yet.)
MLTon is a whole-program optimizing Standard ML compiler. You can keep around your C code by passing -keep g
to MLTon at compilation, e.g:
c:/Program Files (x86)/MLton/bin/mlton.bat" -verbose 1 -keep g test.sml
It can also generate ARM code natively.
nhc98: http://www.haskell.org/nhc98/
Full Haskell '98. Of course many libs now rely on more advanced ghc-only features. But Haskell '98 is plenty capable for general purpose programming.
Is there a language based on S-expressions with powerful macros that allows as seamless integration with Python as Clojure with JVM?
I want to try using such syntax and features while having access to all usual python libraries (including PyQt).
I've been working a project to do this: psil. I have a series of blog posts talking about what I've done. Here's the short manifesto:
Psil is a new general-purpose programming language in the Lisp family of languages. Psil is implemented on top of Python, allowing easy access to existing Python libraries.
- Best features from Lisp and Scheme
- Complete language in its own right
- Built upon the Python standard libraries
- Strong interoperability with Python code
The reality hasn't quite caught up to the vision; for example I don't think there is a way to declare new classes in Psil code that can be used from Python. But at least for functions, it's mostly there.
Note that Psil is built completely on Python 3, and there is no Python 2 version. I don't know whether there is a PyQt for Python 3.
While these aren't exactly what you're looking for, check:
Check out Boo; it's a python-inspired language that runs on the CLR, with built-in support for full macros. If that's what you're missing from Lisp, give it a shot. A friend swears by it.
I am very very interested in Macros and just beginning to understand its true power. Please help me collect some great usage of macro systems.
So far I have these constructs:
Pattern Matching:
Andrew Wright and Bruce Duba. Pattern matching for Scheme, 1995
Relations in the spirit of Prolog:
Dorai Sitaram. Programming in schelog. http://www.ccs.neu.edu/home/dorai/schelog/schelog.html
Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer. The MIT Press, July 2005
Matthias Felleisen. Transliterating Prolog into Scheme. Technical Report 182, Indiana University, 1985.
Extensible Looping Constructs:
Sebastian Egner. Eager comprehensions in Scheme: The design of SRFI-42. In Workshop on Scheme and Functional Programming, pages13?26, September 2005.
Olin Shivers. The anatomy of a loop: a story of scope and control. In International Conference on Functional Programming, pages 2?14, 2005.
Class Systems:
PLT. PLT MzLib: Libraries manual. Technical Report PLT-TR2006-4-v352, PLT Scheme Inc., 2006. http://www.plt-scheme.org/techreports/
Eli Barzilay. Swindle. http://www.barzilay.org/Swindle.
Component Systems:
Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic abstraction in component interfaces. In International Conference on Generative Programming and Component Engineering, pages 373?388, 2005
Software Contract Checking
Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages In ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 236?248, 1998
Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic abstraction.In Symposium on Principles of Programming Languages, pages 203?215, 199
Parser Generators
Scott Owens, Matthew Flatt, Olin Shivers, and Benjamin McMullan. Lexer and parser generators in Scheme. In Workshop on Scheme and Functional Programming, pages 41?52, September 2004.
Tools for Engineering Semantics:
Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT Redex. MIT Press, August 2009.
Speci?cations of Compiler Transformations:
Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass framework for compiler education. Journal of Functional Programming,15(5):653?667, September 2005. Educational Pearl.
Novel Forms of Execution
Servlets with serializable continuations Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Matthias Felleisen. Continuations from generalized stack inspection. In International Conference on Functional Programming, pages216?227, 2005.
Theorem-Proving System
Sebastian Egner. Eager comprehensions in Scheme: The design of SRFI-42. In Workshop on Scheme and Functional Programming, pages 13?26, September 2005.
Extensions of the Base Language with Types
Sam Tobin-Hochstadt and Matthias Felleisen.The design and implementation of typed scheme. In Symposium on Principles of Programming Languages, pages 395?406, 2008.
Laziness
Eli Barzilay and John Clements. Laziness without all the hard work:combining lazy and strict languages for teaching. In Functional and declarative programming in education, pages 9?13, 2005.
Functional Reactivity
Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic data?ow in a call-by-value language. In European Symposium on Programming, 2006
Reference:
Collected from Ryan Culpepper's Dissertation
Culpepper & Felleisen, Fortifying Macros, ICFP 2010
Culpepper, Tobin-Hochstadt and Felleisen, Advanced Macrology and the Implementation of Typed Scheme, Scheme Workshop 2007
Flatt, Findler, Felleisen, Scheme with Classes, Mixins, and Traits, APLAS 2006
Herman, Meunier, Improving the Static Analysis of Embedded Languages via Partial Evaluation, ICFP 2004
Shivers, Carlstrom, Gasbichler & Sperber (1994 & later) The Scsh Reference manual.
Has a lot of good examples of using macros to embed mini-languages into Scheme. Introduced me to the technique of defining macros that implicitly quote their argument. Look at the use of process forms, regular expressions, and the awk-like mini-languages. Scsh is my recommendation as a starting point for playing with macros.
Hilsdale & Friedman (2000) Writing Macros in Continuation-Passing Style.
Shows how the weak syntax-rules macros can be made powerful using continuation-passing style. Gives plenty of examples.
Flatt, Culpepper, Darais & Findler (submitted) Macros that Work Together - Compile-Time Bindings, Partial Expansion, and Definition Contexts.
Provides an overview of, and semantics for the approach to macros in Racket/PLT Scheme. Not a whole lot of examples, but I think the paper has something you are looking for.
ReadScheme! Remember to check the extensive bibliography on ReadScheme.
http://library.readscheme.org/page3.html
One example I think you missed is embedding SQL syntax into Scheme. http://repository.readscheme.org/ftp/papers/sw2002/schemeunit-schemeql.pdf
Macros are also used to write supports for automated testing.
Not a Scheme, but somewhat similar Lisp dialect with a very extensive use of macros: http://www.meta-alternative.net/mbase.html
There are macros implementing various kinds of pattern matching, list comprehensions, various parsers generators (including a PEG/Packrat implementation), embedded Prolog, ADT visitors inference (like scrap your boilerplate in Haskell), extensible syntax macros, Hindley-Milner type system, Scheme-like syntax macros, and many more. Parts of that functionality can be potentially ported to Scheme, other parts needs an extended macro system with explicit context.
This isn't particularly precise in so far as it is spread out over a large number of very old publications most of which i've never read, but IIRC large chunks of the Common Lisp Object System and the Meta-Object Protocol*, can be; are; or were initially, built with of macros...
* Which compose IMHO by far the most advanced OO system programming has ever seen
I would add "The Scheme standard library itself" to the list. Look at the file boot-9.scm
in the guile distribution. Many of the most commonly-used Scheme forms - case
, and
, etc. - are defined there as macros.
I am seeing several variants out there; ClojureCLR, LSharp, IronScheme, IronLisp, among others. Are any of these actively maintained and/or anywhere close to "mature", or are they mostly experiments or dust-gatherers? Which would be considered the most mature framework for compiling to .Net dll's and referencing other .Net dll's, if any? Does any integrate well with Visual Studio a la at least a "Create Lisp Project" feature?
IronLisp is dead and superseded by IronScheme, which in turn is still beta.
L Sharp and ClojureCLR are similar and they follow same idea of modern Lisp for CLR (in contrast to IronScheme, which tries to just implement the R6RS standard on the new platform). ClojureCLR seems to be more popular than L Sharp, and Java's Clojure community is growing up quickly, so you can use many of its libraries in your .NET application.
I know that for ClojureCLR there is a VS2010 plugin available.
I believe, ClojureCLR now is the most intensively developed, so I would bet on it. On other hand, Clojure (and so ClojureCLR) still changes, and future versions of it may differ a lot from current state, which is not very good for long term production project. From this point IronScheme, which implements old verified R6RS, is more preferable. I can't say a lot of L#, but I guess it is somewhere between ClojureCLR and IronScheme.
So, actual decision depends on your personal needs: stability, size of a (potential) project, and, of course, language features - don't forget to learn a bit about all of three.
There is one (non-standard) Lisp compiler for .NET with an emphasis on .NET interoperability:
http://www.meta-alternative.net/mbase.html
It's the most feature-rich of all the listed, but it keeps changing and it's still in beta stage.
Don't forget Bigloo, which is a well-known Scheme compiler to C and the Java VM, and recently added an experimental .NET bytecode compiler.
If you just need to call .NET from Lisp, and you don't need to create DLL's1, RDNZL may work for you.
1I'm not saying that you can't create DLL's with RDNZL and your Lisp implementation, I just haven't had any reason to try to do it.
I want to learn some language from Lisp family. It may be CL or Scheme and try to use it for web programming. Just for fun. I have significant C++ experience (prefessional development).
But I want my choice be modern language without legacy (in language itself and library), because I want learn good design patterns from the start.
I can't decide what is better: CL or Scheme. CL has much greater and standartized library and frameworks (Weblocks), but I heard that it has MUCH of legacy in its syntax and libraries. Scheme is another: simple, concise syntax but poor library. I'd prefer CL if it has no legacy.
I don't like to learn another monster like C++. Is it true that CL is like C++ in Lisp family? And Scheme is like, say, C# or Java - "revised" C++.
Edit: I want to write in functional style, OOP may be, but optional.
Scheme has been invented in the mid 70s.
CL has been invented in 1984.
That Scheme has no legacy or is more modern is a myth. Scheme has been defined before Common Lisp by almost a decade. Scheme still had legacy lkke s-expressions, cons cells, symbols, car, cdr, cons, and more. That Scheme has legacy makes it a member of the family of Lisp languages which has its roots in the first Lisp from 1958.
Scheme's initial goal was to be a small clean language that is closer to lambda calculus, than traditional Lisp. Thus lexical binding as a default in a Lisp language was a first.
Unfortunately it was a toy language in many other respects. It had only a very small set of features, features you would need for writing programs, like a useful form of error handling.
Common Lisp's design goals a decade later were different. It was designed to write commercial software, large software, performant software. Another goal was that it was in the tradition of the main line of Lisp dialects, so that programmers who had already large libraries or programs would not start at zero.
Common Lisp added from day one a lot of features that were thought usefule:
and much more.
in the mid 90s a revision of CL was published. It added:
Since CL started bigger as Scheme, some design decisions make CL better to use than Scheme. For example Scheme has only primitive argument lists and that alone makes libraries harder to use.
Scheme had more revisions of its standard, but the basic design decisions remained and the community was struggling with basics like error handling, records, object system, etc. R6RS turned out to be controversial and I would agree with the critics. I think R6RS is extremely disappointing, both in its direction and its contents.
There are two other point of views: semi-standards and individual implementations.
The Scheme community produced a lot of semi-standard extensions. That should be viewed as a success.
The implementations OTOH diverged widely for Scheme. There was a is little consensus about them. There are many very small implementations and many large implementations.
CL implementations OTOH already contain a large language, so they don't start small. Keyword arguments are just there. Same for the object-system. Over time several applications have made sure that they can run mostly unchanged on many of the implementations. Additionally individual implementations have added a lot of features like Unicode support, threads, concurrent execution, etc etc.
So current Lisp implementations can have a lot of features.
Both Common Lisp and Scheme share the legacy of Lisp: symbols, s-expressions, car, cdr, cons, cons cell based lists, ... and more.
Common Lisp has some parts that are not so great, but are defined in the standard. One example is that CL symbol names are uppercase internally. The idea of 'sequences' is not extensible in the standard. And more. Individual implementations handle many of the limitations of the CL standard. So for example in most implementations the I/O system is written with CLOS, conditions are based on CLOS, there are extensible sequences for SBCL, and more.
CL may be a huge language, but it is no C++. Many parts are surprisingly well designed and easy to use. Many problems also can be repaired by the user, since Common Lisp is a programmable programming language. You don't like the built-in LOOP? Use ITERATE, if you like that more or even write your own.
Common Lisp has a lot of idiosyncrasies, several of them probably stemming from legacy (don't know my Lisp history well enough to say for sure). There's quite a few warts such as inconsistencies in function nomenclature and and argument orders. But the actual language itself is, although a bit odd in places, rather sane. Unlike, say, C++...
Scheme has warts too, but I'd think to a lesser extent. On the other hand, Scheme's standard library is tiny in comparison to CL's, so there's also less room for warts. :-)
Aside from plain CL and Scheme implementations, you also have a couple of "next-generation Lisps", such as Clojure (probably the most "modern" of them all - designed from the ground up for heavy concurrency) and newLISP, and the "next-generation Scheme", Racket (formerly known as PLT Scheme).
I'm personally quite impressed by Racket, and I hope I can use it for something, some day.
I'm a fan of Scheme because it was designed from the ground up to be consistent and simple, but still have advanced features not found in most other languages. For those reasons, it's especially popular in education and academia.
I'd recommend the book The Little Schemer and either Racket or Petite Chez Scheme (both are free) if you want to learn functional programming.
What is code-as-data? I've heard it's superior to "code-as-ascii-characters" but why? I personally find the code-as-data philosophy a bit confusing actually.
I've dabbled in Scheme, but I never really got the whole code-as-data thing and wondered what exactly does it mean?
It means that your program code you write is also data which can be manipulated by a program. Take a simple Scheme expression like
(+ 3 (* 6 7))
You can regard it as a mathematical expression which when evaluated yields a value. But it is also a list containing three elements, namely +
, 3
and (* 6 7)
. By quoting the list,
'(+ 3 (* 6 7))
You tell scheme to regard it as the latter, namely just a list containing three elements. Thus, you can manipulate this list with a program and then evaluate it. The power it gives you is tremendous, and when you "get" the idea, there are some very cool tricks to be played.
As a Lisp programmer you learn to think of a program source as data. It is no longer static text, but data. In some forms of Lisp the program itself is that data structure, which gets executed.
Then all the tools are oriented that way. Instead of a textual macro processor Lisp has a macro system which works over programs as data. The transformation of programs to and from text has also its tools.
Let's think about adding two elements of a vector:
(let ((v (vector 1 2 3)))
(+ (aref v 0)
(aref v 1)))
There is nothing unusual about it. You can compile and run it.
But you could also do this:
(let ((v (vector 1 2 3)))
(list '+
(list 'aref v 0)
(list 'aref v 1)))
That returns a list with a plus symbol and two sublists. These sublists have the symbol aref, then the array value of v and the index value.
That means that the constructed program contains actually symbols, but also data. The array is really a part of the sublists. So you can construct programs and these programs are data and can contain arbitrary data.
EVAL then evaluates the program as data.
CL-USER 17 > (setf *print-circle* t)
=> T
Above tells us that the printer should print circular data structures such that the identities are preserved when read back.
CL-USER 18 > (let ((v (vector 1 2 3)))
(list '+
(list 'aref v 0)
(list 'aref v 1)))
=> (+ (AREF #1=#(1 2 3) 0) (AREF #1# 1))
Now let's eval the data as a Lisp program:
CL-USER 19 > (EVAL (let ((v (vector 1 2 3)))
(list '+
(list 'aref v 0)
(list 'aref v 1))))
=> 3
If your compiler expects text as source one can construct these texts, but they can never reference data directly. For these text based source construction many tools have been developed, but many of these tend to work in stages. In Lisp the functionality of manipulating data can be directly applied to manipulate programs and this functionality is directly built-in and part of the evaluation process.
So Lisp gives you an additional degree of freedom and new ways to think.
Code-as-data is actually only one side of the coin. The other is data-as-code.
The possibility to embed arbitrary data in Lisp code and load and reload it on the fly makes it (the data) very convenient to handle because it can eliminate any potential impedance mismatch between the way the data is represented and the way the code works.
Let me give you an example.
Let's say you want to write some kind of computer game with various monster classes. You have basically two choices: model the monster classes within your programming language or use a data-driven approach where the class descriptions are read from, say, an XML file.
Doing the modelling within the programming language has the benefits of ease of use and simplicity (which is always a good thing). It's also easy to specify custom behaviour depending on the monster class as needed. Finally, the implementation is probably pretty optimised.
On the other hand, loading everything from data files is much more flexible. You can do multiple inheritance where the language doesn't support it; you can do dynamic typing; you can load and reload things at run-time; you can use simple, to-the-point, domain-specific syntax, and much more. But now you need to write some kind of runtime environment for the whole thing, and specifying behaviour means either splitting the data up between the data files and the game code or embedding a scripting language, which is yet another layer of incidental complexity.
Or you can do it the Lisp way: specify your own sublanguage, translate that into code, and execute it. If the programming language you're using is sufficiently dynamic and syntactically flexible, you get all the benefits from using a data-driven approach (since code is data) combined with the simplicity of keeping everything in the code (since data is code).
This isn't specific to Lisp, by the way. There are various shades of code-data-equivalence gray in between Lisp and, say, C++. Ruby, for example, makes embedding data within the application easier than Python does, and Python makes it easier than Java does. Both data-as-code and code-as-data are more of a continuum than they are either-or questions.
Code-as-data refers to the fact that your code is expressed in terms of the language's data structures. I wouldn't try to argue here that it's the best way to program, but I find it to be a beautiful way to express the ideas in the code.
One of the benefits is that metaprogramming is very nearly the same as regular programming. With code-as-ascii-characters, you often end up having to do some serious parsing to do anything meta, and you skip those nasty bits with Lisp.
In Scheme (or any Lisp) you can declare list literals like this:
> '(1 2 3)
=> (1 2 3)
This is similar to many other high-level languages, except for slight differences in notation. For instance, this is how some other languages represent list literals:
[1, 2, 3] # Python
#(1 2 3) "Smalltalk. This is in fact an array in Smalltalk. Let us ignore that for now."
Lists can contain any type of values. As functions are first-class objects, a list can contain functions as well. Let us replace the first element in the above list with a function:
> '(+ 2 3)
=> (+ 2 3)
The single-quote (') identifies the list literal. (Just like the # in Smalltalk). What will happen if we remove the quote? Then the Scheme interpreter will treat the list specially. It will consider the first element as a function (or procedure) and the rest of the elements as arguments to that function. The function is executed (or evaluated):
> (+ 2 3)
=> 5
The ability to represent executable code using a data structure in the language opens a new possibility - we can write programs that write programs. That means, extensions that require changes to the compiler and the runtime system in other languages could be implemented in Lisp, as a few lines of Lisp itself. Imagine you need a new control structure in your language called when
. It is similar to if
but makes reading code a little more natural in some situations:
(when this-is-true do-this)
You can extend your Lisp system to support when
by writing a short macro:
(defmacro when (condition &rest body)
`(if ,condition (progn ,@body)))
A macro is nothing but a list, which gets expanded at compile time. More complex language structures or even entire paradigms could be added to the core language using such lists. For example, CLOS, the Common Lisp Object Systems is basically a collection of macros written in Common Lisp itself.
Unless you're using something like an old Harvard Mark I, your code is stored in the same place and manner as your data -- just (as you noted) probably in the form of ASCII characters, so it's really hard to do anything with. Chances are, most Java programmers have never parsed Java code on their own.
Look at any program -- there's an enormous wealth of information (well, depending on the program!) encoded in the source code itself. That's its reason for existing! By not using a homoiconic language, you're implicitly saying that you're OK with not being able to read that from another program you write (or that it's OK that it's so hard that nobody ever will). Basically the only program on your computer that can read it is the compiler, and the only thing it can do after reading is generate object code and error messages.
Imagine you had to work with some other data source every day, like XML files or an RDBMS, and that the only way to access that data was to run it through a "compiler" that converted it into a format you could read. I don't think anybody would argue that that's a good idea. :-)
I really don't know where I'm going with this, so I'll try to summarize my above ramblings:
I am working through SICP, and the problem 2.6 has put me in something of a quandary. In dealing with Church numerals, the concept of encoding zero and 1 to be arbitrary functions that satisfy certain axioms seems to make sense. Additionally, deriving the direct formulation of individual numbers using the definition of zero, and an add-1 function makes sense. I do not understand how a plus operator can be formed.
Thus far I have this.
(define zero (lambda (f) (lambda (x) x)))
(define (add-1 n)
(lambda (f) (lambda (x) (f ((n f) x)))))
(define one (lambda (f) (lambda (x) (f x))))
(define two (lambda (f) (lambda (x) (f (f x)))))
Looking through the wikipedia entry for lambda calculus, I found that the definition of plus was PLUS := ?mnfx.m f (n f x). Using that definition I was able to formulate the following procedure.
(define (plus n m)
(lambda (f) (lambda (x) ((m f) ((n f) x)))))
What I don't understand, is how that procedure can be derived directly using only the information given by the previously derived procedures. Can anyone answer this in some kind of rigorous proof-like form? Intuitively, I think I understand what's going on, but as Richard Feynman once said, "If I can't build it, I can't understand it..."
It's actually pretty simple. This will probably be viewed as flamebait, but the parens make it harder to see -- a better way to see what happens is either imagine that you're in a curried language, or just use the fact that Scheme has multi-argument functions and embrace that... Here's an explanation that uses lambdas and multiple argument where convenient:
Every number N is encoded as
(lambda (f x) ...apply (f (f (f ... (f x)))) N times...)
This means that the encoding of N is actually
(lambda (f x) (f^N x))
where f^N
is functional exponentiation.
A simpler way to say this (assuming currying): the number N is encoded as
(lambda (f) f^N)
so N is actually a "raise to the power of N" function
Now take your expression (looking inside the lambda
s here):
((m f) ((n f) x))
since n
is is an encoding of a number, it's that exponentiation, so this is actually:
((m f) (f^n x))
and the same for m
:
(f^m (f^n x))
and the rest should be obvious... You have m
applications of f
applied on n
applications of f
applied on x
.
Finally, to leave some fun -- here's another way to define plus
:
(define plus (lambda (m) (lambda (n) ((m add1) n))))
(Well, not too much fun, since this one is probably more obvious.)
I am planning on learning Scheme (by following SICP) and afterwards doing a project with this language. However, I was wondering what would be a good IDE for this? I've looked around a bit, but could not really find very much, except something called Edwin?
Other answers have given all the good choices, but without much description. Here's some more detail:
Racket's IDE, DrRacket, is a great tool for beginners and has a lot of strengths for more advanced schemers. It has good profiler and debugger support (far better than Emacs), uses "standard" keyboard shortcuts by default, and is very clean and easy to use. However, it sometimes lacks functionality its creators view as confusing; for example, compiling only some expressions from your source code can put the REPL in a confusing state, so it's not provided. DrRacket only works for the Racket dialect of Scheme and its derivatives, however, so if you want to work with another implementation, you should probably look at:
GNU Emacs is another fine option for advanced schemers who are willing to put some time into learning their editor. It is powerfully customizable, has modes for almost any file type, and handles Scheme well, especially with quack installed (quack is an extension for Scheme named in parody of DrRacket --- get it, quack?). It doesn't limit you from doing anything you might choose. However, it has a learning curve like a brick wall --- its model of text is unique, its keyboard shortcuts are different than anything you've used before (unless you use CUA mode, which makes them more normal), and you have to use Emacs Lisp to configure and extend it.
You'll be happy using either one once you're accustomed to it. Emacs is less limiting, but harder to learn; DrRacket is more limiting, but more able out of the box in some areas and much easier to learn.
Racket comes with a good IDE.
You can use GNU Emacs with one window open your scheme script and in other scheme interpreter (like guile or MIT Scheme).
You can run this by
C-x 2
C-x o
M-x run-scheme
I was writing an answer here regarding PLT scheme so i thought I would check out their webiste. It appears PLT scheme has changed name to Racket. And I suppose the old editor DrScheme is superseeded by the one called DrRacket.
We used DrScheme last year at the univeristy. Very easy to get started. One window for writing definitions and one for output. At the end of the course we created a text adventure game :D (with OO-programming)
There is also schemescript plugin, if you like eclipse.
I came across a NetBeans based Scheme IDE, lambdaBeans. It does not seem in active development, and I can't vouch for it.
I'm developing Scheme IDE for Windows. It's called "Babbage" . It is like a minimum Emacs. Babbage is very simple and has windows like key assign. Babbage is Unicode editor. Now Babbage is beta version yet.
Dr. Racket have been crashing on my Ubuntu 11.10, and I found emacs a bit unfriendly.
Therefore I've created a plugin for mksv3
Functionality is very simple. It's enough for my SICP exercises, but, if you are going to code a lot in Scheme, you should probably spend time for learning emacs.
This question is maybe somehow inspired with Anyone using Python for embedded projects?; so anyone using some Scheme version or Common Lisp (like ECL) for free/oss/commercial projects?
Personally, I used (and still using) TinyScheme for personal projects where some embedded language is needed, mostly due extremely easy embedding (sorry Python lovers, been there and that is quite painful, especially after I learned from TinyScheme how things can be simple).
The most prominent project I remember hearing about is (Gambit) Scheme on the iPhone. It was shut down by the user agreement for a while but I suppose with the new one, this kind of development is allowed again.
I don't see it on the page any more, but I remember a related blog post about interactive development on the iPhone using Scheme. Very exciting.
I'm working through SICP. Currently, in the first chapter, I'm having problems getting Racket to let me redefine "primitives". For instance, I was under the impression that I should be able to arbitrarily do "(define + 5)" and that would be fine or redefine the sqrt procedure. Instead, I get this: "define-values: cannot change constant variable: +" I have the language currently set to R5RS, which I was under the impression would take care of the compatibility issues with SICP.
Even if possible, such redefinitions are not something that you should do without really understanding how the system will react to this. For example, if you redefine +
, will any other code break? The answer to that in Racket's case is "no" -- but this is because you don't really get to redefine +
: instead, you define a new +
, which only your code can use.
As for the language choice -- Rackets R5RS mode is a very strict one, and it's not something that you'd usually want to use. For a much more SICP-friendly environment, see Neil Van Dyke's SICP Support page which will provide you with a language specifically made for the book. (IIRC, it even has the graphical language that the books shows off.)
In the language panel, you need to disable "disallow redefinition of initial bindings." This fixes the issue.
I ran into problems trying to work thru the RSA example here (part of the SICP stuff):
http://mitpress.mit.edu/sicp/psets/ps3/readme.html
To get this working I had to do this:
1) Run thru the initial download by adding this to the top of a blank file:
#lang planet neil/sicp
and then hitting "Run"
2) Enjoy DrRacket's very user friendly, automatic download and install the PLaneT Neil module by going to grab a coffee ;-)
3) And then once it is installed, close DrRacket.
4) Reopen, and choose SICP PLaneT 1.15 from the Choose A Language list.
(I could not get adding the declaration at the top to work for me aside from doing that to perform the initial download.)
Good luck!
So I just read The Little Schemer and found it really good! I had no prior functional programming background, apart from the "infamous" parenthesis myth I so much heard about Lisp :P
I found it an amazing read and now I'm starving for more. However, after searching a bit, I found this post about a Scheme Bookshelf. In that, the author says he started with SICP and moved on to Little Schemer -> Seasoned Schemer -> Scheme Programming Language -> Essentials of Programming Languages -> Lisp In Small Pieces.
My question is: Now that I read The Little Schemer and that I understood the concept, should I still read SICP? Or can I just skip it or skim through it and start with The Seasoned Schemer? The thing is that I'm "afraid" of finding it "like going back to school again", since I already have a vast experience in other imperative languages...
EDIT: Thanks for your answers so far. I had a feeling you'd say not to skip SICP. I still had the need to ask because part of me just wants to have the feeling of reading Little Schemer again (the Seasoned one) and to explore things further (Essentials of Programming Languages and Lisp In Small Pieces) right away!
The Little Schemer is a good start, but I think you'd still find SICP to have plenty of meat for you. It will have an element of "back to school", but you'll lose that feeling if you throw yourself into the fascinating parts --- some of it is just brilliant. I would not skip or skim SICP; it rewards focused, concentrated work.
By all means do SICP. By "doing" I meant, do all the exercises. Also I suggest that you use Scheme itself and not any other Lisp dialect for SICP exercises. You may be tempted to just "read" the text. Resist that temptation and do all exercises. The recursive thinking you learnt from "The little Schemer" will come handy when you do SICP. The initial portions are a bit mathematical, but don't let this put you off.
Also there are some really good references towards the end of "The Little Schemer", where the author suggests some of the paths that the reader can take before reading the next in the series, "The seasoned schemer". While I haven't read most of the suggested book, I have started with "To Mock a Mockingbird". It is a totally fantastic book.
Enjoy the journey. I am also on the same path as you and understand your excitement. I am currently at section 2.2. Every exercise so far had been extremely fascinating.
The SICP is one of the most famous programming books in the world for a reason- it's worth reading through. Nevertheless, if you would wish, you can go to The Seasoned Schemer and then back to SICP.
And of course, it depends why you're learning Scheme. If it's simply as a hobby, then you can do whatever you want.
What do you mean by "skip"? If you mean "don't bother with it now or ever again", don't do it! If you mean "don't bother with it now and come back later", that's fine.
You almost certainly want to learn what's in SICP sooner or later, but unless you're actually following a syllabus there's no harm in learning other things first.
If you like the format of the Little Schemer, I would recommend moving onto the Seasoned Schemer, and then perhaps the Reasoned Schemer. It would still make sense to study SICP after that, and you can also take sneak peaks into EOPL and LiSP. Don't skip SICP, but there's no reason to rush into it, either.
McCarthy's Elementary S-functions and predicates were atom
, eq
, car
, cdr
, cons
He then went on to add to his basic notation, to enable writing what he called S-functions: quote
, cond
, lambda
, label
On that basis, we'll call these "the LISP primitives" (although I'm open to an argument about type predicates like numberp
)
How would you define the defmacro
function using only these primitives in the LISP of your choice? (including Scheme and Clojure)
The problem with trying to do this on a machine like McCarthy's LISP machine is that there isn't a way to prevent argument evaluation at runtime, and there's no way to change things around at compile time (which is what macros do: they rearrange code before it's compiled, basically).
But that doesn't stop us from rewriting our code at runtime on McCarthy's machine. The trick is to quote the arguments we pass to our "macros", so they don't get evaluated.
As an example, let's look at a function we might want to have; unless
. Our theoretical function takes two arguments, p
and q
, and returns q
unless p
is true. If p
is true, then return nil.
Some examples (in Clojure's syntax, but that doesn't change anything):
(unless (= "apples" "oranges") "bacon")
=> "bacon"
(unless (= "pears" "pears") "bacon")
=> nil
So at first we might want to write unless
as a function:
(defn unless [p q]
(cond p nil
true q))
And this seems to work just fine:
(unless true 6)
=> nil
(unless false 6)
=> 6
And with McCarthy's LISP, it would work just fine. The problem is that we don't just have side-effectless code in our modern day Lisps, so the fact that all arguments passed to unless
are evaluated, whether or not we want them to, is problematic. In fact, even in McCarthy's LISP, this could be a problem if, say, evaluating one of the arguments took ages to do, and we'd only want to do it rarely. But it's especially a problem with side-effects.
So we want our unless
to evaluate and return q
only if p
is false. This we can't do if we pass q
and p
as arguments to a function.
But we can quote
them before we pass them to our function, preventing their evaluation. And we can use the power of eval
(also defined, using only the primitives and other functions defined with the primitives later in the referenced paper) to evaluate what we need to, when we need to.
So we have a new unless
:
(defn unless [p q]
(cond (eval p) nil
true (eval q)))
And we use it a little differently:
(unless (quote false) (quote (println "squid!")))
=> "squid" nil
(unless (quote true) (quote (println "squid!")))
=> nil
And there you have what could generously be called a macro.
But this isn't defmacro
or the equivalent in other languages. That's because on McCarthy's machine, there wasn't a way to execute code during compile-time. And if you were evaluating your code with the eval
function, it couldn't know not to evaluate arguments to a "macro" function. There wasn't the same differentiation between the reading and the evaluating as there is now, though the idea was there. The ability to "re-write" code was there, in the coolness of quote
and the list operations in conjunction with eval
, but it wasn't interned in the language as it is now (I'd call it syntactic sugar, almost: just quote your arguments, and you've got the power of a macro-system right there.)
I hope I've answered your question without trying to define a decent defmacro
with those primitives myself. If you really want to see that, I'd point you to the hard-to-grok source for defmacro
in the Clojure source, or Google around some more.
Explaining it fully in all its details would require an awful lot of space and time for an answer here, but the outline is really pretty simple. Every LISP eventually has in its core something like the READ-EVAL-PRINT loop, which is to say something that takes a list, element by element, interprets it, and changes state -- either in memory or by printing a result.
The read part looks at each element read and does something with it:
(cond ((atom elem)(lambda ...))
((function-p elem) (lambda ...)))
To interpret macros, you simply (?) need to implement a function that puts the template text of the macro somewhere in storage, a predicate for that repl loop -- which means simply defining a function -- that says "Oh, this is a macro!", and then copy that template text back into the reader so it's interpreted.
If you really want to see the hairy details, read Structure and Interpretation of Computer Programs or read Queinnec's Lisp in Small PIeces.
How about this.
I am an intermediate programmer, and have decided to learn either common lisp or scheme. My question is simple, which one would you choose? I don't care much for the difficulty of the syntax, just the power, flexibility, and other aspects of the language itself. Also, which implementation of either common lisp or scheme should I choose? Thanks!
Like so many things, it depends on what you want to do.
Remember, if you choose one now, it doesn't preclude you from changing later. In fact, I found it quite easy to switch from knowing a little Scheme to learning a lot of Clojure.
If you just want to learn, and play around with a Lisp, or even build moderately complex programs, I'd say Scheme is probably a better bet. It's got a cleaner, crisper (smaller) standard library, and there are a lot of resources out that that cater to the learner (not that there aren't for CL, either).
If you want the raw power of tons of libraries (many very well written) and the toolkit of a standard (as standard as a CL implementation gets) library that comes with a CL, then it'd be your better bet.
Alternatively, I'd suggest Clojure. It's a relatively new language (< 5 years), but it's got a lot going for it. It's built for concurrency, with plenty of primitives that make it easy to write state-safe programs if you need to have state. And plenty of other perks, though again, the standard library manages to stay small.
It's also on the JVM, so you have access to all the libraries you would if you were using Java, should you need any of them, plus the raw speed that the JVM has to offer is at your fingertips.
However, it is a new language, with a new (but very friendly!) community. If you just want to dip your toes in the pool of Lisp, I'd say Scheme is your best bet. If you want to get things done, my preference and my love is Clojure.
EDIT Honestly, you can't go wrong with any of the three. One may be better depending on what you want to do, and I'd recommend Clojure to just about anyone.
If you want power and flexibility you go with Common Lisp.
If you want clean and simple you go with Scheme.
So far I'm happy with SBCL.
If you want to write practical code, and/or you want a good degree of portability from one implementation to another, use Common Lisp. There are eleven implementations currently under active maintenance. See my survey of implementations.
The different implementations have different strengths. If you want a free, open-source one, Clozure Common Lisp (CCL) (not to be confused with "Clojure"!) and Steel Bank Common Lisp (SBCL) are good general-purpose implementations. There are also commercial implementations, the best known being Allegro Common Lisp and LispWorks. For Windows-friendliness, Corman Common Lisp has useful facilities. For embedding, Embedded Common Lisp (ECL) is great (you don't have to use it in an embedded way). If you want a Common Lisp that compiles to the Java Virtual Machine, there's Armed Bear Common Lisp (ABCL). See the paper for others; which one you want depends on your individual circumstances.
My impression: Common Lisp is more for getting stuff done, Scheme is more for education and fun. I prefer the SBCL implementation. Scheme, I don't know.
This is an old one ;) Emacs or vi? KDE or Gnome? Red or White?
The biggest difference between the two is that Scheme tends to focus on functional programming; some authors stress functional programming in Common Lisp, such as Paul Graham, and if I write Common Lisp, I follow their advice.
I tend to prefer Scheme since it just makes more sense to me. I've found that the Scheme community, particularly surrounding free software implementations, is much more focused on free software. Consider that if it's important to you. Contrary to popular belief, Common Lisp is a very popular language, but it's most behind closed, corporate doors. That was a big factor for me to turn away from Common Lisp: when the community's not as open, you're not going to find as much in the way of help and libraries.
As far as implementations, I would recommend Guile if you're a GNU/Linux user. Other implementations are just too far outside the mainstream of GNU-consciousness; I like the GNU community, so Guile was the best choice for me. Also Guile has the best set of libraries included in the default installation that I've found (considering that different from the other respondents I know nothing about Clojure).
I've seen some other respondents repeating the old incantation "If you want to get something done, use Common Lisp; if you want to learn, use Scheme." That was probably true in the era of SICP, but I don't think it's true these days. A good implementation of Scheme, like Guile, has tons of libraries available and has plenty of good use-cases that show you can get plenty of stuff done with it.
I have an affinity for the more pragmatic, baroque, and warty programming languages, so I selected Common Lisp.
I use GNU clisp, but I am considering changing to SBCL due to its focus on efficiency.
I chose Scheme because it was the language taught in Structure and Interpretation of Computer Programs. It's been a fun read so far.
I usually view it like this: Common Lisp is to Scheme as C++ is to Python. With both Common Lisp and C++, you're given a huge load of tools and lots of power and essentially allowed to roam free. With Scheme, on the other hand, there's more of a focus on simplicity and you're given a little bit less rope to hang yourself by.
And just like with C++ vs. Python, there's this idea that one is for real, grownup projects while the other is sort of a toy language to play around with or create throwaway scripts, even though in most cases the "toy" is good enough for whatever you need to do.
If you want to look at Scheme, I recommend PLT Racket. It's not strictly standard Scheme, but it's essentially the same and it's a "batteries included" distribution.
common lisp is a lot more useful, but scheme is a lot cleaner. mostly comes down to that.
Scheme is of equal or greater power of Common Lisp, but it doesn't have as much support or bindings. I'd go with Common Lisp. As for the implementation? I've been using sbcl in slime/swank for awhile now, and it's pretty nice and fast. Slime is really nice.
I don't care much for the difficulty of the syntax, just the power, flexibility, and other aspects of the language itself.
The syntax is equally difficult or not in any lisp. Clojure's syntax is a bit easier for non-lispers because different brackets are used. This makes more of a difference than one would expect.
Both Clojure and CL have excellent introductory books. I haven't read scheme books in any depth, but they seem to have a more academic flavor in comparison.
I would recommend Clojure or Common Lisp to a neophyte, based on personal experience.
Clojure is more functional and eminently practical. If using CL I recommend an IDE (Allegro & others have free versions), or using a text-editor and repl. In other words, don't use slime. For Clojure I can't think of any IDEs, but perhaps Textmate or Eclipse will have something?
Scheme has some very good IDEs too such as DrScheme. But I found it easier to stay engaged when doing somewhat of a real project, and both Clojure and CL seemed to make that easier.
Why would anyone prefer Scheme macros over Common Lisp macros (and I genuinely want to know too, I'm not trying to be a troll)?
My experience as a Lisp newb is that Common Lisp style macros are much easier to learn than Scheme's macros. I have yet to see any advantages to Scheme's macros, but of course that doesn't mean they don't exist.
I do know that Scheme macros are "hygenic", but I'm still not convinced this is worth the additional complexity. On the other hand though, there obviously are people that are convinced that this is necessary, otherwise there wouldn't be implementations of Scheme macros in Common Lisp.
To make a long story short, can someone defend Scheme's macros to me?
Scheme macros introduce two, essentially orthogonal, concepts: hygiene and pattern matching. Hygiene is less important in a lisp2 like Common Lisp. The pattern matching language captures many of the common macro idioms, but has the problem that it is essentially a different language from scheme. Probably the best introduction to scheme's macros, along with some of the rationale behind them is Shriram Krishnamurthi's PLAI chapters 36 and 37.
I suspect that the reason people write scheme style macro systems in common lisp is more for the pattern matching than for the hygiene.
Because they use a different, non-Scheme language, Scheme macros are less powerful than Common Lisp macros in the almost-formal sense: you can do arbitrary compile-time computation with them, but it's hairy and convoluted. It's a lot like the argument for not using set!
: less-powerful set!
free languages produces less buggy code in exchange for awkward handling of state. Any time you trade power for discipline, you are betting that you will be able to build more complex systems in the long run.
That's the best argument I've seen for Scheme macros over Common Lisp ones: if you are building a complex language on top of Scheme, you are less likely to introduce subtle macro bugs if you stick with the standard macro system.
Personally, I don't build big languages using macros, so I prefer Common Lisp macros. I find them much easier for small jobs and avoiding variable capture etc isn't a big deal on a small scale.
Scheme macros preserve referential transparency.
Quoting the "Guile Reference Manual" 6.10.2.2 Hygiene:
syntax-rules macros (..) preserve referential transparency. When you read a macro definition, any free bindings in that macro are resolved relative to the macro definition; and when you read a macro instantiation, all free bindings in that expression are resolved relative to the expression.
This property is sometimes known as hygiene, and it does aid in code cleanliness. In your macro definitions, you can feel free to introduce temporary variables, without worrying about inadvertently introducing bindings into the macro expansion.
Standard scheme offers syntax-rules
and syntax-case
.
On this site they say there are 10 LISP primitives. The primitives are: atom, quote, eq, car, cdr, cons, cond, lambda, label, apply
.
http://hyperpolyglot.wikidot.com/lisp#ten-primitives
Stevey reckons there are seven (or five):
Its part of the purity of the idea of LISP: you only need the seven (or is
it five?) primitives to build the full machine.
http://steve-yegge.blogspot.com/2006/04/lisp-is-not-acceptable-lisp.html
What is the minimum number of primitives to build a LISP machine (ie something that can run an eval/value function on LISP code)? (And which ones are they?)
(I can understand you could live without atom, label and apply
)
McCarthy's Elementary S-functions and Predicates were:
atom
Which was necessary because car and cdr are undefined for lists, which means you cannot count on any sort of answer to indicate what was happening if you gave car
an atom.
eq
For testing equality between atoms.
car
For returning the first half (address) of the cons cell. (Contents of address register).
cdr
For returning the second half (decrement) of the cons cell. (Contents of decrement register).
cons
For making a new cons cell, with the address half containing the first argument to cons, and the decrement half containing the second argument.
He then went on to add to his basic notation, to enable writing what he called S-functions:
quote
To represent an expression without evaluating it.
cond
The basic conditional to be used with the previously described predicates.
lambda
To denote a function.
label
Though he didn't need this for recursion, he might not have known about the Y-Combinator (according to Paul Graham), he added this for convenience and to enable easy recursion.
So you can see he actually defined 9 basic "operators" for his Lisp machine. In a previous answer to another one of your questions, I explained how you could represent and operate on numbers with this system.
But the answer to this question really depends on what you want out of your Lisp machine. You could implement one without the label
function, as you could symply functionally compose everything, and obtain recursion through applying the Y-Combinator.
atom
could be discarded if you defined the car
operation on atoms to return NIL
.
You could essentially have McCarthy's LISP machine with 7 of these 9 defined primitives, but you could ostensibly define a more concise version depending on how much inconvenience you'd want to inflict on yourself. I like his machine quite fine, or the many primitives in the newer languages like Clojure.
This faq states:
There is no single "best" minimal set of primitives; it all depends on the implementation. For example, even something as basic as numbers need not be primitive, and can be represented as lists. One possible set of primitives might include CAR, CDR, and CONS for manipulation of S-expressions, READ and PRINT for the input/output of S-expressions and APPLY and EVAL for the guts of an interpreter. But then you might want to add LAMBDA for functions, EQ for equality, COND for conditionals, SET for assignment, and DEFUN for definitions. QUOTE might come in handy as well.
That comes from the School of Computer Science, Carnegie Melon website.
McCarthy used seven operators to define the original Lisp: quote
, atom
, eq
, car
, cdr
, cons
and cond
. This article retraces his steps.
See this other question to construct macros from Paul Graham's set of 7 primitives.
Paul Graham implements eval using seven.
In McCarthy's Micro Manual for LISP he implements eval using ten.
Common LISP and Emacs LISP have the atom type predicate. Scheme and Clojure don't have it. http://hyperpolyglot.wikidot.com/lisp
Is there a design reason for this - or is it just not an essential function to include in the API?
In Clojure, the atom predicate isn't so important because Clojure emphasizes various other types of (immutable) data structures rather than focusing on cons cells / lists.
It could also cause confusion. How would you expect this function to behave when given a hashmap, a set or a vector for example? Or a Java object that represents some complex mutable data structure?
Also the name "atom" is used for something completely different - it's one of Clojure's core concurrency mechanisms to manage shared, synchronous, independent state.
Clojure has the coll?
(collection?) function, which is (sort of) the inverse of atom?
.
In the entire IronScheme standard libraries which implement R6RS, I never needed such a function.
In summary:
Which pretty much follows Scheme's minimalistic approach.
In Scheme anything that is not a pair
is an atom
. As Scheme already defines the predicate pair?
, the atom?
predicate is not needed, as it is so trivial to define:
(define (atom? s)
(not (pair? s)))
In the book The Little Schemer, atom?
is defined as follows:
(define (atom? x)
(and (not (pair? x))
(not (null? x))))
Noting that null
is not considered an atom, as other answers have suggested. In the mentioned book atom?
is used heavily, in particular when writing procedures that deal with lists of lists.
It's a trivial function:
(defun atom (x)
(not (consp x)))
It is used in list processing, when the Lisp dialect uses conses to build lists. There are some 'Lisps' for which this is not the case or not central.
After competing in and following this year's Google Code Jam competition, I couldn't help but notice the incredible number of [successful] contestants that used C/C++ and Java. The distribution of languages used throughout the competition can be seen here.
After programming in C/C++ for several years, I recently fell in love with Python for its readable/straightforward nature. More recently, I learned functional languages like OCaml, Scheme, and even logic languages like Prolog. These languages certainly have their merits and, in my opinion, can be applied more easily than C++ and Java for certain situations. For example, Scheme's use of call/cc simplifies backtracking (a tool required to answer several problems) and Prolog's logic specification, although inefficient due to its brute-force nature, can drastically simplify (and even automatically solve) certain problems that are difficult to wrap one's brain around.
It is clear that a competition contestant should use the tools that are best suited for the challenge. Even x86 assembly is Turing complete - that doesn't justify solving problems with it. In this case, why are the contestants that use less common languages like Scheme/Lisp, Prolog, and even Python significantly less successful than contestants that use C/C++ and Java? Worded differently, why don't successful contestants use languages that, although may be less mainstream, are arguably better tools for the job?
There are several motivations for my question. Most importantly, I would like to become a better programmer - both in the practical aspect and the competition aspect. After being introduced to such beautiful paradigms like functional and logic programming, it is discouraging to see so many people discard them in favor of C/C++ and Java. It even makes me question my admiration for said paradigms, worrying that I cannot be successful as a Lisp/Scheme/Prolog programmer in a programming competition.
Great question! As someone who has dabbled in programming contests a bit myself, I may have something to say.
[Let's get the standard disclaimer out of the way: contest programming is only loosely related to "programming in the real world", and while it tests algorithmic and problem-solving skills and the ability to come up with fast bug-free working code under time pressure, it does not necessarily correlate with being able to build large software projects, write maintainable code, etc (beyond the fact that well-structured programs are easier to debug).]
Now for some answers:
C++/Java are more common than other languages in the real world as well, so you'd expect to see a higher proportion anywhere. (But it's even higher in the contest population.)
Many of these participants are students, or got into contests as students, and C++/Java are more common "first languages" that students learn. (Undergrad students these days may start with Scheme, Haskell, Python, etc., but high-schoolers (often self-taught) less often.) In fact, many of the Eastern European participants still use Pascal, and are more amazing with it than the rest of us will ever be with any language.
The school- and college-level contests usually use these languages. The International Olympiad in Informatics (IOI) allows only C, C++ and Pascal (or maybe it allows Java now; I haven't kept up), and the ACM Intercollegiate Programming Contest (ACM ICPC) allows only C, C++ and Java. TopCoder allows C++, Java, C# and VB (really :p); and recently, Python. So you could say the "contest ecosystem" has more C++/Java programmers in it. Google Code Jam and IPSC are among the few contests that allow code in any language, actually.
Now the question is, in GCJ where the contestants are free to choose a language, why wouldn't they choose Python or Scheme? The most relevant factor is that these languages are slow. Sure, for most real-world programming they are easily fast enough, but for the tight loops that are often involved in getting a program to run under the n-second limit for all test cases, these languages don't cut it for any of the algorithmically more involved problems. (A problem designed to accept O(n log n) solutions but not Θ(n2) solutions for C/C++ frequently rules out even optimal O(n log n) solutions in slower languages. Even Java used to be given a handicap at USACO; I'm not sure this is still the case.)
Another factor is the libraries: C++ and Java have better libraries for frequently useful algorithms and data structures (e.g. red-black trees, C++'s next_permutation), while Python's libraries (good enough for the real world) are less useful here, and Prolog and Scheme... I don't know about their libraries. This is a relatively minor factor, because these programmers can write their own code when necessary. :-)
General-purpose multi-paradigm languages are more useful for just getting things done within the time constraints of the contest, than languages that force a philosophy or way of doing things on you. This is why Prolog will always remain unpopular, for instance. (General philosophy: some languages are "enabling" languages that let you do anything including shooting yourself in the foot, some are "directing" that force you to do things the right way.) This is also why C++ is three times more popular than Java in the general contest participants, and much more popular among the top contestants. Since code doesn't have to be read by anyone else, it's ok and even useful to have loop macros like FOR(i,n)
(less code to type, and more importantly less chance of making a bug when in a hurry). Nothing against Java, there are a few top programmers who use Java too. :-)
Finally, although many of these top programmers may have C++/Java/Pascal as their "first language", they are not good because of their language, so you don't have to despair about that. Many of these same programmers have won contests like the ICFP contest even with intentionally using crazy languages like shell scripts, m4 (used in autoconf), and assembly (the team named "You Can't Spell Awesome Without ASM").
Why we all speak English and not Esperanto? Well, it just happened so. Even though English is inconsistent and bloated and Esperanto is intentionally designed as 'better tool'.
Thus, one reason is a tradition. In most schools programming is still taught in C/C++, Java, Pascal or even Basic. And participate in those contests mostly students, which choose language they know better.
Also, you can notice that most algorithmic books feature psedudocode in style of Pascal or Ada, and very very rarely - Lisp. I don't know why, perhaps also a tradition. Or perhaps it's just not so good for the algorithms.
Another reason would be speed. Although it's not a problem for Google Code Jam, in almost all contests 2x speed gap is a difference between 'Accepted' and 'Time Limit' verdicts.
In other words, if optimal algorithm in C++ runs 10 times faster than in Ruby, it may mean that sub-optimal algorithm in C++ will still be faster than a good one in Ruby. And contest authors usually don't want to allow O(n^2) submissions, if O(n*logn) can be achieved.
fun question, probably should be community wiki.
Look at number of finalists by countries: http://www.go-hero.net/jam/10/regions. notice number of people from East Europe and Russia. those places have very strong C++ communities, as well as Java, for number of reasons.
look at number languages in qualifiers: http://www.go-hero.net/jam/10/languages/0 and finals: http://www.go-hero.net/jam/10/languages/6. C++ starts out less than half and has 75 percent in finals. either good programmers prefer C++ or C++ makes the programmers. Probably by the time you master C++, other things become trivial.
You are free to draw your own conclusions though.
First, I'd question your premise [edit: or what I take to be a premise -- that contestants using C++ and Java fare about equally well]. For example, here's what languages were used for the entries that came in the first 100 places and the last 100 places in Google's recent AI contest:
Contestants using C++ and Java did not seem to be anywhere close to equally successful in that contest. Contestants using Python didn't seem to fare particularly well either, though there were considerably fewer of them, weakening any conclusion in that regard.
Second, of course, an awful lot of the explanation (as others have pointed out) is undoubtedly just the number of people who are familiar with each language. There are probably more people taking a course in Java right now than the total number of people who've ever written any Lisp, Scheme or Prolog.
Edit: I think a third possibility is simply versatility. To pick an extreme example, Prolog is very well suited to a few problems, but equally poorly suited to many others. Few people can (or at least do) learn more than one or two languages well enough to use them in a contest, so most people who are interested in such things are likely to choose languages that can work reasonably well for almost anything, rather than attempting to learn a specialized language for every problem that might be chosen.
First of all, as you have pointed C++
and Java
are mainstream languages. These automatically means that people who start doing programming competitions will be introduced to them first - by the way who learns Lisp
as a first language:) I also participate regularly in such competitions - I use C++
to compete, although my favorite language is Java
. It is just I want to practice another language apart from Java
- also C++
is a little bit less verbose and runs faster which is important for programming competitions. Now to my point - people become experts first in mainstream languages. To participate in programming competitions you must have quite a good grasp of the language you are using. You don't have time to search on the internet for stupid things - like forgot a construct. It is just that speed is an important factor there. To use Lisp
in a competition, you must be fond of it. I don't think there are such many people out there. Correct me if I am wrong. And honestly the pros you have mentioned like simplifies backtracking: In whatever language backtracking is easy - declare a method and just call it again for every possible outcome. It couldn't be simpler. I haven't felt till now that the language I am using is trying to trip up my feet for programming competitions.
I liked Jerry Coffin's idea of plotting contestants of the Google AI contest, so I took all of the results and plotted them (calculated mean, standard deviation, and then graphed the normal distribution curves in Excel).
With Lua and JS, got this:
Without (there were few contestants, so maybe the results are skewed):
It looks like Java participants did markedly worse than the rest, while Go, Common Lisp, and C are on the better end.
A vital reason might be that every contests don't support languages like python or prolog. Specially ACM ICPC World Finals support C/C++ and Java. And TopCoder also supports only C++, Java, C#, VB, and now Python. It is natural for the contestants that they will choose one language that is available in every contest. Another reason might be execution speed. And yes, another reason is these are the languages that most of the people learn first.
Big libraries were a selling point for Java in ACM ICPC. It's handy to be able to realize you want some random data structure or algorithm and just pull it out of the standard libraries.
In nearly all Google Code Jam rounds, more of the higher-performing contestants code in C++.
Below are the language stats from Google Code Jam 2012 Round 1A, 1B, and 1C (listed top to bottom). The number of contestants in each round are 3,686, 3,281, and 3,189 respectively.
OMG ... People are all going through the Stats and Figures !!
Lets not forget the basics.. These are the only two languages (mostly) which are taught to people in college/schools...!
That might answer the heavy rush!
Keep in mind that C++ is not only the majority among all contestants, but as the rounds progress, its percentage just keeps and keeps improving.
I'd say it is true that most of the participants are students (However, since it is an open tournament with chances to a job interview with google, then you have to consider that many who participate are graduated). But the latest rounds are only for people with ton of experience. They are not just students who just learned to code in C++ / Java.
Of course, the student argument also works against languages like LISP and OcaML or ProLog. That is languages, that are used a lot in AI areas but in the mainstream world students are the most likely to be learning and use them.
Big contests other than google's support few languages, but that still wouldn't explain why Pascal or .net are not near the level of Java (As they tend to be equally supported in the major contest events).
A lot of the best coders in these contests know a lot of languages. But they still prefer to use C++ during the rounds it must be for a bigger reason than "learned C++" first.
I would argue against the claim that languages other than C++ or Java are better tools for the job. If direct data says that the finalists are more likely to use C++ and Java it is a direct contradiction to that claim.
Google AI competition data does not actually contradict any premise regarding the code jam. It actually does show that top coders are able to use languages like Common Lisp when it is truly the better tool for the job. If we want to use this data to assume that CLISP is a great tool for AI competitions, then we should also assume that C++ is a great tool for algorithm competitions like GCJ.
Racket is a descendant of Scheme. How is Racket different than R6RS? What did it add, or take away, or is just different?
I'm understanding that Racket is more than a language, it's a platform for languages. But I'm referring to the main Racket dialect.
Racket is ultimately based on R5RS, and not R6RS and not a strict superset of either. I don't think it can be called 'Scheme' because it's not backwards compatible with any Scheme standard.
Most implementations offer extensions, but are otherwise backwards compatible, of course, the compiler that comes with Racket can also run in R5RS or R6RS mode. Valid R5/6RS Scheme that runs in racket mode may either be rejected, cause runtime errors, or behave differently than it should. With that said, the main points where it is not backwards compatible are:
set-cdr!
and set-car!
, rather set-mcar!
which only works on pairs specifically created as mutable.letrec
is called letrec*
in R6RS and doesn't exist in R5RS, what R5RS and R6RS call letrec
doesn't exist in Racket.(...)
, { ... }
, and [...]
as equivalent, R5RS does not, but R6RS does.There are probably more, but on most other parts racket is a superset of Scheme.
It contains immutable lists, as mentioned above. It also contains a structure system that is a bit cleaner than the R6RS record system. It has an object oriented class and object system. It has native support for design by contract. It has a unit system reminiscent of the ML module system, as well as a module system much like the R6RS module system. I'm sure I've forgotten as many things as I've mentioned.
I'm not sure that the rename was useful as anything other than a marketing gimmick, but racket is definitely a distinct dialect of scheme.
The rationale for the name-change from PLT Scheme to Racket is discussed on the Racket site.
For one big example, Racket lists are immutable by default whereas Scheme's are mutable. Racket also includes a lot of standard libraries (e.g. Web Server) that other Schemes do not.
Racket includes a lot of really nice language constructs not included in R6RS scheme, like "match".
Is there a R5RS-or-higher Scheme implementation that does parallelization? For example, if I say to do:
(map (lambda (x)
(pure-functional-stuff x))
'(1 3 5 7 11 13))
it will process 1, 3, 5, and 7 simultaneously if the machine can do it? That's supposed to be one of the big advantages of functional programming, but I can't find a maintained, up-to-date Scheme that does it. I'd be fine with one that wouldn't parallelize it unless I assert that the function doesn't have side-effects.
I'm a developer of Schemik and I think that it is the Scheme you are looking for. The project is still developed and maintained. Early this year, I released a version which improves compatibility with R5RS. Unfortunately, Schemik is a research project focused on the process of expression evaluation, thus, its standard library is still relatively small. Is there any particular functionality you miss in Schemik?
Racket has futures that do something very similar to this, and will also have a second approach for parallelism in the near future (which will be called "places").
It turns out that you don't really want the compiler to try to parallelize everything because then you end up wasting time coordinating efforts even when doing something simple like,
(map add1 '(1 2 3))
that would be faster to just do on one thread. However, many functional languages these days make it easy for you to make this parallel when "add1" is actually "really-long-computation". Each language has its own approach, but I'd recommend taking advantage of multiple cores in Racket using futures.
While the compiler deciding things automatically for you is nice, it's not a bad tradeoff to change a "map" to a "pmap" where you think it might help rather than deal with slowdowns in other places because the compiler was too ambitious.
Something as basic as
(define (pmap f xs)
(map touch (map (?(x) (future (?() (f x)))) xs)))
can get you pretty far when used judiciously, but you should experiment with chunking up your data to feed to parallel threads.
I just found Schemik
http://schemik.sourceforge.net/
which seems to be maintained to at least 2009, though I don't know if it's R5RS.
I'm a big fan of functional programming in general, Schemes in particular, and PLT-Racket ideally. I am wondering what concrete steps are likely to get me into a position where coding Scheme (or some functional language) is the bulk of the work.
I'm actually quite interested in academia, but on the other hand, I don't feel like I necessarily have what it takes (at least not at the moment) to do a top-tier Ph.D in CS. I definitely would prefer to have some real-world experience putting complex systems together in Scheme either way. Does anyone have any advice for an aspiring Schemer?
Start writing some Scheme libraries, then blog about the libraries you've wrote, get noticed in the community.
This will always give you leverage when applying for a position, employers like to have some evidence of what you can do.
dalton has the right idea; you want to build something you can show off. To find out about needs, you could go to http://srfi.schemers.org/, which is an archive of proposals for Scheme libraries and other improvements to Scheme, and see what you think you can contribute to. Or make contact with the Racket team; you may be able to contribute to Racket directly.
If you want to leverage something popular and in the news: App Inventor is based on Google Blocks, which are in turn based on Kawa, which is a Scheme dialect [*].
If you can show off your skills by putting together blocks and making them available for the community...it's a natural way to take advantage both of your multi-language skills and something currently getting press coverage.
Regards, Dak [*] and I forgot to say that earlier, mea culpa!
F# is getting popular in the finance sector:
I've been learning scheme, and I just realized that I don't really know how to properly comment my functional scheme code. I know how to add a comment of course - you add a ;
and put your comment after it. My question is what should I put in my comments, and where should I comment for maximum readability and comprehensability for other programmers reading my code?
Here's a code snippet I wrote. It's a function called display-n
. It can be called with any number of arguments and outputs each argument to the screen in the order that they are provided.
(define display-n
(lambda nums
(letrec ((display-n-inner
(lambda (nums)
(display (car nums))
(if (not (equal? (cdr nums) (quote ()))
(display-n-inner (cdr nums))))))
(display-n-inner nums))))
Edit: Improved tabbing and replaced '()
with (quote ())
to avoid SO messing up the formatting.
I'm just not sure how/where to add comments to make it more understandable. Some scheme code I've seen just has comments at the top, which is great if you want to use the code, but not helpful if you want to understand/modify it.
Also - how should I comment macros?
The common style for Lisp comments is
Procedure overview comments should probably follow the style of RnRS documens, so to just add comments to your procedure as-is, would look something like
N.B. I don't use three semicolons for the whole procedure description, since it screws up fill-paragraph in Emacs.
Now about the code, I would ditch the whole define-variable-as-a-lambda thing. Yes, I get that this is the "purest" way to define a function, and it makes for a nice consistency with defining procedures are the results of LETs and other procedures, but there's a reason for syntactic sugar, and it's to make things more readable. Same for the LETREC?just use an internal DEFINE, which is the same thing but more readable.
It's not a huge deal that DISPLAY-N-INNER's parameter is called NUMS, since the procedure's so short and DISPLAY-N just hands its NUMS straight to it anyways. "DISPLAY-N-INNER" is sort of a lame name, though. You would give it something with more semantic meaning, or give it a simple name like "ITER" or "LOOP".
Now about the logic of the procedure. First, (equal? (cdr nums) '())
is silly, and is better as (null? (cdr nums))
. Actually, when you are operating over an entire list, it's best to make the base case a test of whether the list itself, and not its CDR, is empty. This way the procedure won't error if you pass it no arguments (unless you want it to do that, but I think it makes more sense for DISPLAY-N to do nothing if it gets nothing). Furthermore, you should test whether to stop the procedure, not whether to continue:
But for all that, I would say the the procedure itself is not the best way to accomplish the task it does, since it is too concerned with the details of traversing a list. Instead you would use the more abstract FOR-EACH method to do the work.
This way, instead of a reader of the procedure getting mired in the details of CARs and CDRs, he can just understand that FOR-EACH will DISPLAY each element of NUMS.
Some random notes:
Traditionally, Scheme and Lisp code has used ;;;
for toplevel comments, ;;
for comments in the code, and ;
for comments on the same line as the code they're commenting on. Emacs has support for this, treating each of these a little differently. But especially on the Scheme side this is no longer as popular as it was, but the difference between ;;
and ;
is still common.
Most modern Schemes have adopted new kinds of comments: theres:
#|...|#
for a block comment -- useful for long pieces of text that comment on the whole file.#;<expr>
is a comment that makes the implementation ignore the expression, which is useful for debugging.As for the actual content of what to write, that's not different than any other language, except that with a more functional approach you usually have more choices on how to lay out your code. It also makes it more convenient to write smaller functions that are combined into larger pieces of functionality -- and this changes the documentation style too, since many such small functions will be "self documenting" (in that they're easy to read and very obvious in how they're working).
I hate to sound like a broken record, but I still think that you should spend some time with HtDP. One thing that it encourages in its design recipe is to write examples first, then the documentation, and then expand that to actual code. Furthermore, this recipe leaves you with code that has a very standard set of comments: the input/output types, a purpose statement, some documentation about how the function is implemented when necessary, and the examples can be considered as another kind of documentation (which would turn to commented code in "real" code). (There are other books that take a similar position wrt documentation.)
Finally, documenting macros is not different than documenting any other code. The only thing that can be very different i what's written in the comments: instead of describing what some function is doing, you tend to describe what code it expands too, so the comments are also more on the meta level. A common approach to macros is to to minimal work inside the macro -- just what's needed at that level (eg, wrap expressions in (lambda () ...)
), and leave the actual implementation to a function. This helps in documenting too, since the two related pieces will have comments on how the macro expands and how it runs, independently.
I follow an approach similar to what's posted here:
http://www.cc.gatech.edu/computing/classes/cs2360/ghall/style/commenting.html
Note: this is for Common Lisp.
Specifically:
" Four Semicolons(;;;;)
...denote a sub heading in the file...
Three Semicolons(;;;)
...denote a description of the succeeding function, macro, or
variable definition...
[I usually just most of the description into the "docstring"
of the function or variable.]
Two Semicolons(;;)
...denote a description of the succeeding expression...
One Semicolon(;)
...denotes an in-line comment that explains a particular element
of the expression on that line... Brevity is important for
inline comments"
I think a great place to start would be to put your one-sentence description of what the function does
It can be called with any number of arguments and outputs each argument to the screen in the order that they are provided.
as a comment at the beginning.
I'm not particularly conversant in scheme, so I can't comment (:-) on whether additional line-by-line comments explaining the mechanics of how the function achieves that result would be expected according to normal scheme style (but I suspect not).
Any pointers to scheme/racket or clojure bayesian classification libraries? I need one for a toy/learning project that I'm going to do.
For clojure there is Incanter. It's more than just a bayes library. It is more akin to R. The documentation has two sections about it's bayes capabilities: 1, 2.
Weka is kind of classic. It is a Java lib, so it can be accessed from Clojure
If you use Clojure, you have full access to Java libraries. Classifier4J seems to be a good fit, although development stopped several years ago. You should be able to find several more if you dig through Sourceforge (not sure what your specific requirements are).
There's also https://github.com/psantacl/naive-bayes-clj
I have read McCarthy's 1960 paper on LISP and found no reference to anything that's similar to user-defined macros or normal order evaluation. I was wondering when marcos first appeared in programming language history (and also in Lisp history):
Thank you!
To look for how macros where introduced into Lisp, you should look for mentions of FEXPRs and FSUBRs which the predecessors of modern Lisp macros (or more accurately, FEXPRs are the predecessors of user-defined macros). These are mentioned in several places -- for example, in the From LISP 1 to LISP 1.5 section of McCarthy's History of Lisp. But in fact, it's also mentioned earlier than that: in p.48 of the LISP I PROGRAMMER'S MANUAL (from 1960) you can see a description of FEXPRs and FSUBRs.
BTW, it's a little bogus to compare Lisp macros with string-based systems. The advantage of using a tree transformer vs string manipulations is significant enough to make it a completely different system. Another important aspect of Lisp macros is that they are local transformation vs a global program transformation (the most obvious paper to read for this is Felleisen's On the Expressive Power of Programming Languages). And of course there's a whole area here -- going from FEXPRs to the modern, more well behaved macros, then to hygienic macros in Scheme (which deal with a representation that is richer than symbolic parse trees), then a combination of macros and a module system, syntax expansion phases, etc etc etc. There's probably enough stuff here for a few years of reading...
I think the idea goes back to Post systems, rewriting with strings ("if you see this string, replace it with that string"). Post systems are Turing-capable, and can thus compute anything (including program texts!). Emil Post's paper on these is dated 1943, but supposedly he did the original conceptualization in the 1920s.
The General Purpose Macro Processor, one of the first widely used ones, was available in the early 60s.
TRAC is another early macro processor dating to the same period. The History of Computer Languages (TRAC) says it was designed in 1959.
Both of these are Turing-capable macro processors.
SNOBOL also dates from the same period.
The fact that very general-purpose macro processors were being built in the early 60s hints to me that there were likely special-purpose macro processors built before then to provide inspiration. I'm pretty sure macro processors were in use in assemblers before this point, but I don't have specific evidence.
I know that COBOL has so-called COPY libs, which are a cross between macros and include files. I don't know when this was introduced into COBOL, but the langauge goes back to 1958.
It is interest to note that LISP macros can be considered to be a special case of tree-to-tree rewrites ("if you see an s-expression that looks like this, replace it by an s-expression that looks like that"). Trees can be easily modelled as strings (see: "LISP" :) and thus LISP macros are a special case of string rewriting.
The generalized case of tree-rewriting is now the basis for Program Transformation Systems, which can carry out massive changes on program text.
From The Evolution of Lisp (Steele/Gabriel):
3.3 Macros
Macros appear to have been introduced into Lisp by Timothy P. Hart in 1963 in a short MIT AI Memo [Hart, 1963],
Timothy P. Hart, MACRO Definitions for LISP, October 1963
I've got a little experience with Python (enough to where I can do if/else/elif and some random number generation), but I've always had a weird fascination with the Lisp languages. I downloaded some scheme source code to look at the syntax but it was pretty much gibberish to me.
For a programmer with only a little programming experience like myself, given some good books, websites, and some time, would it be particularly difficult to learn either Common Lisp or Scheme? Which of the two would be easier? How do they compare with Python and C, as far as ease of learning?
Thanks
Get SICP (Structure and Interpretation of Computer Programs). It was the entry level CS class textbook at MIT up until very recently. It is entirely based on Scheme. If you enjoy CS at all, you will love this book. It's fantastic. You'll walk away a much better programmer too after reading it (and ideally doing most of the exercises). It's an ideal beginner's book, it starts at the very beginning and eases you up to being quite competent at Scheme. However, it is a college textbook, so unless you have a bit of a knack for programming, it may be a tad on the tough side.
Given some good books, websites, and some time, would it be particularly difficult to learn either Common Lisp or Scheme?
No.
Which of the two would be easier?
Scheme, because
It has better books for beginners.
It has a superb interactive programming environment designed for people who are just learning the language.
It is smaller.
How do they compare with Python and C, as far as ease of learning?
I think it's harder to learn C than to learn either Python or Scheme, because to learn C you really have to grok the machine model, pointers, and dynamic memory.
Between Scheme and Python, it is really hard to predict how any individual learner will react. I really like Python's significant whitespace, and I find Scheme's parentheses annoying and distracting. Lots of people really like Scheme's parentheses, and they find Python's significant whitespace annoying and distracting. (There are important semantic differences, but it is hard to escape the tyranny of syntax.)
What books should I use? (question you should have asked and didn't)
Don't use Structure and Interpretation of Computer Programs (SICP). That book's point of view is "let's show off how smart we are by coding all of computer science in Scheme." The book is a tremendous intellectual tour de force, but it is not at all suitable for beginners. When MIT used it in 6.001, it was as a "weedout" course because 30–40% of all MIT students wanted to major in EECS, and they were trying to turn people away. SCIP is a terrific for a senior CS student or a programmer with 5 years of experience. Don't try to learn from it.
Some good books to learn from:
How to Design Programs by Felleisen et al has been carefully crafted and honed through years of experience. It uses Scheme and teaches you exactly what it claims in the title. Highly recommended.
Simply Scheme by Harvey and Wright is an introductory CS book by people who felt that SCIP needed a "prequel." I enjoyed reading it but I haven't taught from it.
If you can stand cuteness, The Little Schemer by Felleisen and Friedman has a very unusual dialectical style, with tons of examples, that you might like.
Get
"The Little Schemer"
and
"The Advanced Schemer"
These books are INVALUABLE as programming concept aides. I'd personally do them before SICP just because SICP is a bit fast if you haven't programmed much before... and even if you have they're great books!
I personally think of Scheme as a very good pedagogical language. It can be used for just about anything I suppose, but it's very good for teaching programming constructs without getting bogged down in syntactical issues. The closest thing to pure semantics you're going to get.
Scheme is (intentionally) more compact than Common Lisp, and you'll find that you can learn the language very quickly. Now, mastering the (any) language and computer science concepts is another story, and @Matt Greer's book suggestion would be a wonderful place to start.
Lisp isn't hard to learn. It can be taught poorly, and it does have some "high level" concepts, especially if you're coming from the imperative "classic" programming world.
But today, may of the modern languages have aspects very similar to what Lisp offers, so there is likely not much "new" in Lisp compared to other languages, especially Python.
My "hurdle" with Lisp (and Scheme) was simply "lambda". Essentially, my fundamental problem was I had nothing to relate to what a "lambda" was, why it was called "lambda", etc.
If it was named "function" or "routine" or something, it would have been trivial. But as is, the word "lambda" was meaningless in every way. They could have called it "mork", "bleem", or "fizbin" and it would have been as useful.
Once I grokked "lambda", the rest fell in to place.
If you're interested a A Lisp (i.e. a language which is essentially from the Lisp family), then Scheme is a good choice. But, Scheme is NOT Common Lisp (which is what "Lisp" typically means today), they are really different languages.
If you want to learn Common Lisp, I would start with Common Lisp and skip Scheme.
You can look to Practical Common Lisp to get you in to writing Lisp without "having to learn it" so to speak.
You can actually find a full video course of Structure and Interpretation of Computer Programs on Google Video. Start here: http://video.google.com/videoplay?docid=933300011953693438#
The videos were made in the 80's by Hewlett-Packard, and taught by Sussman and Abelson (the original authors). The class is full of HP HW/mechanical engineers who are being retrained as SW engineers. HP released them to the public domain.
Anyone could watch these videos and be a Lisp programmer by the end. Amazing, excellent instructors.
I'd say a Lisp will be easier to learn as a new programmer than if you wait. That's because the way most languages encourage you to think about programming is a handicap to learning Lisp; being experienced with a more conventional language will probably help in some ways, but not with the qualities that make Lisp unique.
Scheme --- the Lisp with which I'm most familiar --- is probably about as easy as Python to learn, especially if you choose PLT Scheme (now renamed Racket), which offers you a lot of helpful extensions. Common Lisp is probably about the same difficulty, though I find it less instinctive for reasons which are probably not universal. I have found C much more difficult than either, for the reasons Norman Ramsey suggests.
What one I'd suggest learning depends very much on what you want to do with it. If you want to learn a crystal-clear language with no frills, whose core can be learned quickly, learn a Scheme that implements the R5RS standard, such as Scheme48. If you want a more capable Scheme, either immediately or later on, learn PLT Scheme/Racket. If you want a big, friendly, diffuse language of immense power but not as visibly internally consistent as Scheme, choose Common Lisp; Steel Bank Common Lisp is a good implementation.
As to which is easier, Lisp or Scheme, being "dialects" of the Lisp family, at the beginner level they are pretty much the same thing and interchangeable. I learned Common Lisp from Peter Siebel's "Practical Common Lisp", then picked up SICP and worked through all the exercises through the first two chapters using Common Lisp rather than Scheme. There are just a few different keywords and things like the use of funcall
in CL where just a pair of parentheses would suffice in Scheme.
Both Siebel's book and SICP are available for free in their entirety on the web. Download them and get hackin'!
Last time I checked the lectures from the intro classes for CS61A at Berkeley which used SICP were available from iTunes, which would give you a full lecture series to help you learning the language. For free! I TA'd for Brian Harvey back in the late 90's and students really liked his lectures.
http://deimos3.apple.com/WebObjects/Core.woa/Browse/berkeley.edu.1621506930
I would recommend going with Common Lisp.
It has excellent implementations that provide a variety of different capabilities. The best ones are still the commercial implementations (though they have no-cost versions for learning Lisp) like Allegro CL from Franz and LispWorks. They offer extensive libraries and include GUI-based development environments. But the open source and free implementations are excellent, too: SBCL, CCL, ECL, CLISP, ...
There are a bunch of excellent books for Lisp, like Peter Seibel's Practical Common Lisp.
Learning Common Lisp is not that difficult, but getting deeper experience get take some time, because the language and its eco-system is surprisingly rich.
Learning Scheme is useful, too. Also learning SICP can help. But there is no immediate need, since the Lisp literature talks about many of the same issues. Unfortunately Scheme lost some of its appeal in recent years (I find the latest R6RS to be totally disappointing) and I find also implementations like 'Racket' to be moving in the wrong direction. Instead one might want to learn some of the better ML dialects and implementations (say, OCAML). Though it might be interesting to check out various Scheme implementations, there are some with interesting capabilities.
The core ideas you should learn from Lisp are these:
Learn how Lisp supports these ideas and why they are important.
Consider (the poorly titled) "Programming Languages, An Interpreter-Based Approach" by Samuel N. Kamin. You'll learn how to program in 7 different languages (including Lisp, Scheme, SASL, CLU), plus how to implement interpreters for each. You should come away with a good understanding of how the languages differ, why they're designed the way they are, what are the tradeoffs in using them, etc.
If you are fascinated by the language, i think you will find it easy. But i must say it's not for everyone. I tried several times learning Scheme and Common Lisp and lost interest. When i see an "if" in a programming language, i start looking for "then", "else", an open-brace, a colon, etc. but Lisp has none of that. I only see a soup of parenthesis.
Besides, some concepts are easier in other languages. I agree with the guys who don't like the word "lambda". I really got it when i learned Lua (Javascript is very similar). In Lua and Javascript, when you need an anonymous function, you type (guess what) "function(etc. etc.)". When you want to create a closure by returning a function, you write (guess what) "return function(etc., etc.)". In Lisp, you write "lambda" and use the implicit return at the end of the function. Not very beginner-friendly.
I aslo agree with Norman Ramsey: Don't use Structure and Interpretation of Computer Programs (SICP).
This book is weird. It starts really easy, on page 1 you learn some expressions like (+ 137 349). Easy as pie. Then, on page 2 you learn functions. On page 3 you learn recursion. On page 4 you learn higher-order functions with lambdas (!!!). On page 5 onwards, you say WTF and can't make sense of anything. The book has only 5 chapters each with a thousand pages. It introduces assignment in chapter 3. Maybe your brain is functional, but my brain is certainly imperative and i need to see what the machine is doing: assigning values, copying memory etc. Teaching higher-order functions before assignment is just backwards in my imperative brain. In the last chapter the book talks about compilers, interpreters and garbage-collection. Is this the same book that started teaching expressions like (+ 137 349)? Now i can understand the last chapters of this book, but only after learning half a dozen programming languages of different paradigms and reading a lot about programming languages and their implementation. I don't know how anyone could follow the pace this book imposes on the reader.
Relatively, it's a very difficult language to learn if you are as stubborn as I am :) Python is an OOP language, and while FP is possible, it's still OOP. Lisp is a FOP language like Haskell. Like Python, it can do OP, but it's still FOP. Terms used: OOP = Object Oriented Programming OP = Object Programming FOP = Functional Oriented Programming FP = Functional Programming
So... I'm new to scheme r6rs, and am learning macros. Can somebody explain to me what is meant by 'hygiene'?
Thanks in advance.
Hygiene is often used in the context of macros. A hygienic macro doesn't use variable names that can risk interfering with the code under expansion. Here is an example. Let's say we want to define the or
special form with a macro. Intuitively,
(or a b c ... d)
would expand to something like (let ((tmp a)) (if tmp a (or b c ... d)))
. (I am omitting the empty (or)
case for simplicity.)
Now, if the name tmp
was actually added in the code like in the above sketched expansion, it would be not hygienic, and bad because it might interfere with another variable with the same name. Say, we wanted to evaluate
(let ((tmp 1)) (or #f tmp))
Using our intuitive expansion, this would become
(let ((tmp 1)) (let ((tmp #f)) (if tmp (or tmp)))
The tmp
from the macro shadows the outer-most tmp
, and so the result is #f
instead of 1
.
Now, if the macro was hygienic (and in Scheme, it's automatically the case when using syntax-rules
), then instead of using the name tmp
for the expansion, you would use a symbol that is guaranteed not to appear anywhere else in the code. You can use gensym
in Common Lisp.
Paul Graham's On Lisp has advanced material on macros.
If you imagine that a macro is simply expanded into the place where it is used, then you can also imagine that if you use a variable a
in your macro, there might already be a variable a
defined at the place where that macro is used.
This is not the a
that you want!
A macro system in which something like this cannot happen, is called hygienic.
There are several ways to deal with this problem. One way is simply to use very long, very cryptic, very unpredictable variable names in your macros.
A slightly more refined version of this is the gensym
approach used by some other macro systems: instead of you, the programmer coming up with a very long, very cryptic, very unpredictable variable name, you can call the gensym
function which generates a very long, very cryptic, very unpredictable and unique variable name for you.
And like I said, in a hygienic macro system, such collisions cannot happen in the first place. How to make a macro system hygienic is an interesting question in itself, and the Scheme community has spent several decades on this question, and they keep coming up with better and better ways to do it.
Here's what I found. Explaining what it means is another matter altogether!
http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-1.html#node_toc_node_sec_12.1
I'm so glad to know that this language is still being used! Hygienic code is code that when injected (via a macro) does not cause conflicts with existing variables.
There is lots of good information on Wikipedia about this: http://en.wikipedia.org/wiki/Hygienic_macro
Macros transform code: they take one bit of code and transform it into something else. As part of that transformation, they may surround that code with more code. If the original code references a variable a
, and the code that's added around it defines a new version of a
, then the original code won't work as expected because it will be accessing the wrong a
: if
(myfunc a)
is the original code, which expects a
to be an integer, and the macro takes X
and transforms it to
(let ((a nil)) X)
Then the macro will work fine for
(myfunc b)
but (myfunc a)
will get transformed to
(let ((a nil)) (myfunc a))
which won't work because myfunc
will be applied to nil
rather than the integer it is expecting.
A hygienic macro avoids this problem of the wrong variable getting accessed (and a similar problem the other way round), by ensuring that the names used are unique.
Wikipedia has a good explanation of hygienic macros.
Apart from all the things mentioned, there is one important other thing to Scheme's hygienic macros, which follow from the lexical scope.
Say we have:
(syntax-rules () ((_ a b) (+ a b)))
As part of a macro, surely it will insert the +, it will also insert it when there's a + already there, but then another symbol which has the same meaning as +
. It binds symbols to the value they had in the lexical environment in which the syntax-rules
lies, not where it is applied, we are lexically scoped after all. It will most likely insert a completely new symbol there, but one which is globally bound to the same meaning as +
is at the place the macro is defined. This is most handy when we use a construct like:
(let ((+ *))
; piece of code that is transformed
)
The writer, or user of the macro thus needn't be occupied with ensuring its use goes well.
I had never really thought about whether a symbol could be a number in Lisp, so I played around with it today:
> '1
1
> (+ '1 '1)
2
> (+ '1 1)
2
> (define a '1)
> (+ a 1)
2
The above code is scheme, but it seems to be roughly the same in Common Lisp and Clojure as well. Is there any difference between 1 and quoted 1?
In Common Lisp, '1 is shorthand for (QUOTE 1). When evaluated, (QUOTE something) returns the something part, unevaluated. However, there is no difference between 1 evaluated and 1 unevaluated.
So there is a difference to the reader: '1 reads as (QUOTE 1) and 1 reads as 1. But there is no difference when evaluted.
Numbers are self-evaluating objects. That's why you don't have to worry about quoting them, as you do with, say, lists.
A symbol can be made from any string. If you want the symbol whose name is the single character 1
, you can say:
(intern "1")
which prints |1|
, suggesting an alternate way to enter it:
'|1|
Well, they are in fact very different. '1
is however precisely the same as (quote 1)
. (car ''x)
evaluates to the symbol 'quote'.
1
is an S-expression, it's the external representation of a datum, a number 1. To say that 1
is a 'number-object' or an S-expression to enter that object would both be acceptable. Often it is said that 1
is the external representation for the actual number object.
(quote 1)
is another S-expression, it's an S-expression for a list whose first element is the symbol 'quote' and whose second element is the number 1. This is where it's already different, syntactic keywords, unlike functions, are not considered objects in the language and they do not evaluate to them.
However, both are external representations of objects (data) which evaluate to the same datum. The number whose external representation is 1
, they are however most certainly not the same objects, the same, code, the same datum the same whatever, they just evaluate to the very same thing. Numbers evaluate to themselves. To say that they are the same is to say that:
(+ 1 (* 3 3))
And
(if "Strings are true" (* 5 (- 5 3)) "Strings are not true? This must be a bug!")
Are 'the same', they aren't, they are both different programs which just happen to terminate to the same value, a lisp form is also a program, a form is a datum which is also a program, remember.
Also, I was taught a handy trick once that shows that self-evaluating data are truly not symbols when entered:
(let ((num 4))
(symbol? num) ; ====> evaluates to #f
(symbol? 'num) ; ====> evaluates to #t
(symbol? '4) ; ====> evaluates to #f
(symbol? '#\c) ; #f again, et cetera
(symbol? (car ''x)) ; #t
(symbol? quote) ; error, in most implementations
)
Self evaluating data truly evaluate to themselves, they are not 'predefined symbols' of some sorts.
Quoting prevents expressions from being evaluated until later. For example, the following is not a proper list:
(1 2 3)
This is because Lisp interprets 1 as a function, which it is not. So the list must be quoted:
'(1 2 3)
When you quote a very simple expression such as a number, Lisp effectively does not alter its behavior.
See Wikipedia: Lisp.
In Lisp, the apostrophe prevents symbols to be evaluated. Using an apostrophe before a number is not forbidden, it is not necessary as the numbers represent themselves. However, like any other list, it automatically gets transformed to an appropriate function call. The interpreter considers these numbers coincide with their value.
As has been pointed out, there is no difference, as numbers evaluate to themselves. You can confirm this by using eval
:
(eval 1) ;=> 1
This is not limited to numbers, by the way. In fact, in Common Lisp, most things evaluate to themselves. It's just that it's very rare for something other than numbers, strings, symbols, and lists to be evaluated. For instance, the following works:
(eval (make-hash-table)) ;equivalent to just (make-hash-table)
How come most Lisps and Schemes are dynamically typed? Does static typing not mix with some of their common features?
Typing and s-expressions can be made to work together, see typed scheme.
Partly it is a historical coincidence that s-expression languages are dynamically typed. These languages tend to rely more heavily on macros, and the ease of parsing and pattern-matching on s-expressions makes macro processing much easier. Most research on sophisticated macros happens in s-expression languages.
Typed Hygienic Macros are hard.
When Lisp was invented in the years from 1958 to 1960 it introduced a lot of features both as a language and an implementation (garbage collection, a self-hosting compiler, ...). Some features were inherited (with some improvements) from other languages (list processing, ...). The language implemented computation with functions. The s-expressions were more an implementation detail (at that time), than a language feature. A type system was not part of the language. Using the language in an interactive way was also an early implementation feature.
The useful type systems for functional languages were not yet invented at that time. Still until today it is also relatively difficult to use statically typed languages in an interactive way. There are many implementations of statically typed languages which also provide some interactive interface - but mostly they don't offer the same level of support of interactive use as a typical Lisp system. Programming in an interactive Lisp system means that many things can be changed on the fly and it could be problematic if type changes had to be propagated through whole programs and data in such an interactive Lisp system. note that Some Schemers have a different view about these things. R6RS is mostly a batch language generally not that much in the spirit of Lisp...
The functional languages that got invented later with static type systems then also got a non-s-expression syntax - they did not offer support for macros or related features. later some of these languages/implementations used a preprocessor for syntactic extensions.
Static typing is lexical, it means that all information about types can be inferred from reading source code without evaluating any expressions or computing any things, conditionals being most important here. A statically typed language is designed so that this can happen, a better term would be 'lexically typed', as in, a compiler can prove from reading the source alone that no type errors will occur.
In the case of lisp, this is awkwardly different because lisp's source code itself is not static, lisp is homo-iconic, it uses data as code and can to some extend dynamically edit its own running source.
Lisp was the first dynamically typed language, and probably for this reason, program code itself is no longer lexical in Lisp.
Edit: a far more powerful reason, in the case of static typing you'd have to type lists. You can either have extremely complex types for each lists which account for all elements, of demand that each element has the same type and type it as a list of that. The former option will produce hell with lists of lists. The latter option demands that source code only contains the same type for each datum, this means that you can't even build expressions as a list is anyhow a different type than an integer.
So I dare say that it is completely and utterly infeasible to realize.
I would like to to choose one of these languages for building web applications. I'm not interested in framework per se, but have the following needs:
I'm very familiar with Haskell, and have some familiarity with scheme (in particular PLT). Scheme appeals to me as good candidate for web development due to it's simple syntax which is homogenous across libraries. I state this despite my subjective opinion that Haskell is a 'cleaner' language.
Haskell web apps seem to require learning and building a patchwork of different combinator libraries. On the plus side, I realise this can be quite expressive, although I'd prefer to eliminate impedance mismatches where possible.
While scheme-plt looks to be a good fit, I can find but one example of it being used in the "real world". Haskell doesn't seem to fair too much better here, but there seems to be a bigger community behind the web side.
Please help me make up my mind. For the most part I'm interested in real-world use cases.
[Note: We have renamed "PLT Scheme" to "Racket"; I will refer to it as that.]
"Rapid development."
I find Racket great for rapid development. If you follow the Continue tutorial on using Racket for Web, I think you will as well. You can start prototyping your application without ever saving a file, it's easy to integrate the many packages on PLaneT, and macros remove the burden of ever writing boiler-plate more than once.
"Easy to scale."
I've done a lot of research into scaling Web applications written in Racket. Racket Web applications can use stateful continuations (recorded in the server's RAM) or stateless (recorded in a serializable format and stored by users or databases/etc) or any combination of the two. A brief summary of these distinctions is described in the documentation. For each regime there are an assortment of ways of dealing with scale, such as stateful continuation management policies and stateless stuffers.
I've put a lot of thought into making the defaults scale well, but also easy enough to change for your circumstances.
On the less Web-specific front, we have native support for trendy scalable databases like MongoDB and memcached.
"Strong community for the web."
Apart from usage of our software in education, it seems we are most often deployed on the Web. If you scan through PLaneT you'll see a preponderance of Web-related libraries. I'm not sure of another metric for you.
"Quick and easy to deploy."
I think the rapid development point speaks to this. If you have other questions related to deployment, I'm happy to answer.
"I can find but one example of it being used in the 'real world'."
The guys at Untyped have a few products using it. I've written two commercial sites and at least four other reasonably large community sites. We know of a dozen or so contractors building applications using it. There are a few startups I've talked to that are using it as well. There's no point pretending we're as common as Python or Ruby, etc, but we're not purely academic or theoretical either.
If you have any other questions, feel free to email me directly or the mailing list, so others in our community can more easily benefit from the discussion. Happy hacking!
Sounds like you want people to make the case for the various languages and toolchains for you. Well, here's what I know about Haskell -- there's a lot of people, tools and experience to help you out:
I think there's no choice, really.
While I love Don Stewart's extensive arguments for Haskell, I feel that Haskell suffers from an embarrassment of riches: there are just way too many options to choose from, too many packages on Hackage (of widely varying quality), and I wouldn't know where to begin. Whereas with PLT Scheme I think it's easy to know where to begin: you take whatever Shriram Krishnamurti and Jay McCarthy have been doing and build on that.
Disclaimer: I've written thousands of lines of Haskell, some of which is deployed. I've written only toy Scheme programs. So maybe being on the outside I get a rosier view of PLT Scheme webapps than is really justified. But although I love Haskell and the Haskell Platform, I really would have no idea where to begin with a webapp—I would have to do research on that mailing list and on all that other stuff Don talks about. I would find it quite intimidating to get started.
Scheme seems a good fit for the web because of three features: XML as s-expressions, first class continuations and an interactive REPL. These things make for nice frameworks like Blackhole for Gambit Scheme.
I was looking for a replacement for Java and RoR and eventually came to this solution. Gambit is very performant but, in common with most Schemes, is essentially single-threaded and everything halts when you call out to some C code. In order to get around this, I wrote a pure Scheme MySQL library so that database calls wouldn't block the internal Gambit threads. Then I had the same problem with SSL and soon realised that I couldn't possibly write all the libraries that I would need. The issue here is that there are probably too many Scheme implementations and not enough people using them.
At the point I decided to learn Haskell as it seemed to be the only functional language that had multi-processor support and great performance to boot. It has the advantage that there is only one implementation (GHC) and has a largish and very helpful user base - but you'll know this already !
I've been using Snap on a prototyping project and although it is low-level and relatively new, it has some great features such as the very flexible Heist templating library and, best of all, dynamic recompilation when you change anything. The recompilation, pretty much matches the REPL advantage of Scheme. BlazeBuilder comes close to s-exp XML expressibility and there is a sample continuations session library in mysnapsession - so it's getting there IMHO.
To be fair, I didn't look to deeply at PLT as performance seemed an issue, when compared with Gambit, and it seemed to have lots of non-standard extensions to Scheme which I was wary of.
One thing I like about Scheme for web programming is the straightforward correspondence between HTML and its serialized representation in Scheme. For example the following HTML page:
<html>
<head>
<title>sxml simple / CGI example</title>
</head>
<body>
<form method="post" action="tabulate.cgi">
<table>
<tr>
<td>Name</td>
<td><input type="text" name="username"/></td>
</tr>
<tr>
<td>City</td>
<td><input type="text" name="city"/></td>
</tr>
<tr>
<td>Favorite Pro Wrestler</td>
<td><input type="text" name="favorite_wrestler"/></td>
</tr>
</table>
<input type="submit"/>
</form>
</body>
</html>
can be converted using one function call to its Scheme representation below, and vice versa:
(*TOP*
(*PI* xml
"version=\"1.0\"")
(html (head (title "sxml simple / CGI example"))
(body (form (@ (method
"post")
(action
"tabulate.cgi"))
(table (tr (td "Name")
(td (input (@ (type "text")
(name "username")))))
(tr (td "City")
(td (input (@ (type "text")
(name "city")))))
(tr (td "Favorite Pro Wrestler")
(td (input (@ (type "text")
(name "favorite_wrestler"))))))
(input (@ (type "submit")))))))
The Scheme representation of the page has the desirable properties: 1) it is human-readable (with training), 2) it is machine-readable - it can be understood as-is by any Scheme interpreter, without requiring any libraries 3) it maps easily to in-memory Scheme data structures, which can be manipulated and 4) it can be rendered trivially into HTML
Seems to me like you are trying to justify using two pretty low use languages for web development. Would you not just use ruby or python for example? Django and rails are pretty mature and you are going to run into less problems in the long run.
I need some help understanding some of the points from Paul Graham's article http://www.paulgraham.com/diff.html
A new concept of variables. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning or binding variables means copying pointers, not what they point to.
A symbol type. Symbols differ from strings in that you can test equality by comparing a pointer.
A notation for code using trees of symbols.
The whole language always available. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime.
Matt's explanation is perfectly fine -- and he takes a shot at a comparison to C and Java, which I won't do -- but for some reason I really enjoy discussing this very topic once in a while, so -- here's my shot at an answer.
Points (3) and (4) on your list seem the most interesting and still relevant now.
To understand them, it is useful to have a clear picture of what happens with Lisp code -- in the form of a stream of characters typed in by the programmer -- on its way to being executed. Let's use a concrete example:
;; a library import for completeness,
;; we won't concern ourselves with it
(require '[clojure.contrib.string :as str])
;; this is the interesting bit:
(println (str/replace-re #"\d+" "FOO" "a123b4c56"))
This snippet of Clojure code prints out aFOObFOOcFOO
. Note that Clojure arguably does not fully satisfy the fourth point on your list, since read-time is not really open to user code; I will discuss what it would mean for this to be otherwise, though.
So, suppose we've got this code in a file somewhere and we ask Clojure to execute it. Also, let's assume (for the sake of simplicity) that we've made it past the library import. The interesting bit starts at (println
and ends at the)
far to the right. This is lexed / parsed as one would expect, but already an important point arises: the result is not some special compiler-specific AST representation -- it's just a regular Clojure / Lisp data structure, namely a nested list containing a bunch of symbols, strings and -- in this case -- a single compiled regex pattern object corresponding to the #"\d+"
literal (more on this below). Some Lisps add their own little twists to this process, but Paul Graham was mostly referring to Common Lisp. On the points relevant to your question, Clojure is similar to CL.
After this point, all the compiler deals with (this would also be true for a Lisp interpreter; Clojure code happens always to be compiled) is Lisp data structures which Lisp programmers are used to manipulating. At this point a wonderful possibility becomes apparent: why not allow Lisp programmers to write Lisp functions which manipulate Lisp data representing Lisp programmes and output transformed data representing transformed programmes, to be used in place of the originals? In other words -- why not allow Lisp programmers to register their functions as compiler plugins of sorts, called macros in Lisp? And indeed any decent Lisp system has this capacity.
So, macros are regular Lisp functions operating on the programme's representation at compile time, before the final compilation phase when actual object code is emitted. Since there are no limits on the kinds of code macros are allowed to run (in particular, the code which they run is often itself written with liberal use of the macro facility), one can say that "the whole language is available at compile time".
Let's go back to that #"\d+"
regex literal. As mentioned above, this gets transformed to an actual compiled pattern object at read time, before the compiler hears the first mention of new code being prepared for compilation. How does this happen?
Well, the way Clojure is currently implemented, the picture is somewhat different than what Paul Graham had in mind, although anything is possible with a clever hack. In Common Lisp, the story would be slightly cleaner conceptually. The basics are however similar: the Lisp Reader is a state machine which, in addition to performing state transitions and eventually declaring whether it has reached an "accepting state", spits out Lisp data structures the characters represent. Thus the characters 123
become the number 123
etc. The important point comes now: this state machine can be modified by user code. (As noted earlier, that's entirely true in CL's case; for Clojure, a hack (discouraged & not used in practice) is required. But I digress, it's PG's article I'm supposed to be elaborating on, so...)
So, if you're a Common Lisp programmer and you happen to like the idea of Clojure-style vector literals, you can just plug into the reader a function to react appropriately to some character sequence -- [
or #[
possibly -- and treat it as the start of a vector literal ending at the matching]
. Such a function is called a reader macro and just like a regular macro, it can execute any sort of Lisp code, including code which has itself been written with funky notation enabled by previously registered reader macros. So there's the whole language at read time for you.
Actually, what has been demonstrated thus far is that one can run regular Lisp functions at read time or compile time; the one step one needs to take from here to understanding how reading and compiling are themselves possible at read, compile or run time is to realise that reading and compiling are themselves performed by Lisp functions. You can just call read
or eval
at any time to read in Lisp data from character streams or compile & execute Lisp code, respectively. That's the whole language right there, all the time.
Note how the fact that Lisp satisfies point (3) from your list is essential to the way in which it manages to satisfy point (4) -- the particular flavour of macros provided by Lisp heavily relies on code being represented by regular Lisp data, which is something enabled by (3). Incidentally, only the "tree-ish" aspect of the code is really crucial here -- you could conceivably have a Lisp written using XML.
1) A new concept of variables. In Lisp, all variables are effectively pointers. Values are what have types, not variables, and assigning or binding variables means copying pointers, not what they point to.
(defun print-twice (it)
(print it)
(print it))
'it' is a variable. It can be bound to ANY value. There is no restriction and no type associated with the variable. If you call the function, the argument does not need to be copied. The variable is similar to a pointer. It has a way to access the value that is bound to the variable. There is no need to reserve memory. We can pass any data object when we call the function: any size and any type.
The data objects have a 'type' and all data objects can be queried for its 'type'.
(type-of "abc") -> STRING
2) A symbol type. Symbols differ from strings in that you can test equality by comparing a pointer.
A symbol is a data object with a name. Usually the name can be used to find the object:
|This is a Symbol|
this-is-also-a-symbol
(find-symbol "SIN") -> SIN
Since symbols are real data objects, we can test whether they are the same object:
(eq 'sin 'cos) -> NIL
(eq 'sin 'sin) -> T
This allows us for example to write a sentence with symbols:
(defvar *sentence* '(mary called tom to tell him the price of the book))
Now we can count the number of THE in the sentence:
(count 'the *sentence*) -> 2
In Common Lisp symbols not only have a name, but they also can have a value, a function, a property list and a package. So symbols can be used to name variables or functions. The property list is usually used to add meta-data to symbols.
3) A notation for code using trees of symbols.
Lisp uses its basic data structures to represent code.
The list (* 3 2) can be both data and code:
(eval '(* 3 (+ 2 5))) -> 21
(length '(* 3 (+ 2 5))) -> 3
The tree:
CL-USER 8 > (sdraw '(* 3 (+ 2 5)))
[*|*]--->[*|*]--->[*|*]--->NIL
| | |
v v v
* 3 [*|*]--->[*|*]--->[*|*]--->NIL
| | |
v v v
+ 2 5
4) The whole language always available. There is no real distinction between read-time, compile-time, and runtime. You can compile or run code while reading, read or run code while compiling, and read or compile code at runtime.
Lisp provides the functions READ to read data and code from text, LOAD to load code, EVAL to evaluate code, COMPILE to compile code and PRINT to write data and code to text.
These functions are always available. They don't go away. They can be part of any program. That means any program can read, load, eval or print code - always.
How are they different in languages like C or Java?
Those languages don't provide symbols, code as data or runtime evaluation of data as code. Data objects in C are usually untyped.
Do any other languages other than LISP family languages have any of these constructs now?
Many languages have some of these capabilities.
The difference:
In Lisp these capabilities are designed into the language so that they are easy to use.
For points (1) and (2), he is talking historically. Java's variables are pretty much the same, which is why you need to call .equals() to compare values.
(3) is talking about S-expressions. Lisp programs are written in this syntax, which provides lots of advantages over ad-hoc syntax like Java and C, such as capturing repeated patterns in macros in a far cleaner way than C macros or C++ templates, and manipulating code with the same core list operations that you use for data.
(4) taking C for example: the language is really two different sub languages: stuff like if() and while(), and the preprocessor. You use the preprocessor to save having to repeat yourself all the time, or to skip code with #if/#ifdef. But both languages are quite separate, and you can't use while() at compile time like you can #if.
C++ makes this even worse with templates. Check out a few references on template metaprogramming, which provides a way of generating code at compile time, and is extremely difficult for non-experts to wrap their heads around. In addition, it's really a bunch of hacks and tricks using templates and macros that the compiler can't provide first class support for - if you make a simple syntax error, the compiler is unable to give you a clear error message.
Well, with Lisp, you have all this in one single language. You use the same stuff to generate code at run time as you learn in your first day. This isn't to suggest metaprogramming is trivial, but it is certainly more straightforward with first class language and compiler support.
Points (1) and (2) would also fit Python. Taking a simple example "a = str(82.4)" the interpreter first creates a floating point object with value 82.4. Then it calls a string constructor which then returns a string with value '82.4'. The 'a' on the left hand side is merely a label for that string object. The original floating point object was garbage collected because there are no more references to it.
In Scheme everything is treated as an object in a similar manner. I'm not sure about Common Lisp. I would try to avoid thinking in terms of C/C++ concepts. They slowed me down heaps when I was trying to get my head around the beautiful simplicity of Lisps.
Python is actually almost close enough to LISP to be a dialect. In some ways, I think it's pretty close to what McCarthy envisioned. He always meant to implement a full syntax, the only reason he never did was because LISPers liked coding in s-expressions better. Try reading some of Paul Graham's essays (http://www.paulgraham.com/icad.html) if you want to grok the LISPer's take on Python. Not necessarily the true take, just a thought. Or check this page out to get a feel for how they relate: http://norvig.com/python-lisp.html
edit: Aaronc is actually totally right. My apologies for that.
I'm trying to grasp the semantics of call/cc in Scheme, and the Wikipedia page on continuations shows the yin-yang puzzle as an example:
(let* ((yin
((lambda (cc) (display #\@) cc) (call-with-current-continuation (lambda (c) c))))
(yang
((lambda (cc) (display #*) cc) (call-with-current-continuation (lambda (c) c)))))
(yin yang))
It should output @*@**@***@****@...
, but I don't understand why; I'd expect it to output @*@*********
...
Can somebody explain in detail why the yin-yang puzzle works the way it works?
I don't think I understand this one fully, but I can only think of one (extremely hand-wavy) explanation for this:
yin
and yang
are first bound in the let*
. (yin yang)
is applied, and it goes back to the top, right after the first call/cc is finished.yin
is re-bound to the value of the second call/cc. (yin yang)
is applied again, but this time it's executing in the original yang
's environment, where yin
is bound to the first call/cc, so control goes back to printing another @. The yang
argument contains the continuation that was re-captured on the second pass through, which as we've already seen, will result in printing **
. So on this third pass, @*
will be printed, then this double-star-printing continuation gets invoked, so it ends up with 3 stars, and then this triple-star continuation is re-captured, ... Musings first, possible answer at the end.
I think the code can be re-written like this:
; call (yin yang)
(define (yy yin yang) (yin yang))
; run (call-yy) to set it off
(define (call-yy)
(yy
((lambda (cc) (display #\@) cc) (call/cc (lambda (c) c)))
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c)))
)
)
Or with some extra display statements to help see what is happening:
; create current continuation and tell us when you do
(define (ccc)
(display "call/cc=")
(call-with-current-continuation (lambda (c) (display c) (newline) c))
)
; call (yin yang)
(define (yy yin yang) (yin yang))
; run (call-yy) to set it off
(define (call-yy)
(yy
((lambda (cc) (display "yin : ") (display #\@) (display cc) (newline) cc)
(ccc))
((lambda (cc) (display "yang : ") (display #*) (display cc) (newline) cc)
(ccc))
)
)
Or like this:
(define (ccc2) (call/cc (lambda (c) c)))
(define (call-yy2)
(
((lambda (cc) (display #\@) cc) (ccc2))
((lambda (cc) (display #*) cc) (ccc2))
)
)
Possible Answer
This may not be right, but I'll have a go.
I think the key point is that a 'called' continuation returns the stack to some previous state - as if nothing else had happened. Of course it doesn't know that we monitoring it by displaying @
and *
characters.
We initially define yin
to be a continuation A
that will do this:
1. restore the stack to some previous point
2. display @
3. assign a continuation to yin
4. compute a continuation X, display * and assign X to yang
5. evaluate yin with the continuation value of yang - (yin yang)
But if we call a yang
continuation, this happens:
1. restore the stack to some point where yin was defined
2. display *
3. assign a continuation to yang
4. evaluate yin with the continuation value of yang - (yin yang)
We start here.
First time through you get yin=A
and yang=B
as yin
and yang
are being initialised.
The output is @*
(Both A
and B
continuations are computed.)
Now (yin yang)
is evaluated as (A B)
for the first time.
We know what A
does. It does this:
1. restores the stack - back to the point where yin and yang were being initialised.
2. display @
3. assign a continuation to yin - this time, it is B, we don't compute it.
4. compute another continuation B', display * and assign B' to yang
The output is now @*@*
5. evaluate yin (B) with the continuation value of yang (B')
Now (yin yang)
is evaluated as (B B')
.
We know what B
does. It does this:
1. restore the stack - back to the point where yin was already initialised.
2. display *
3. assign a continuation to yang - this time, it is B'
The output is now @*@**
4. evaluate yin with the continuation value of yang (B')
Since the stack was restored to the point where yin=A
, (yin yang)
is evaluated as (A B')
.
We know what A
does. It does this:
1. restores the stack - back to the point where yin and yang were being initialised.
2. display @
3. assign a continuation to yin - this time, it is B', we don't compute it.
4. compute another continuation B", display * and assign B" to yang
The output is now @*@**@*
5. evaluate yin (B') with the continuation value of yang (B")
We know what B'
does. It does this:
1. restore the stack - back to the point where yin=B.
2. display *
3. assign a continuation to yang - this time, it is B"
The output is now @*@**@**
4. evaluate yin (B) with the continuation value of yang (B")
Now (yin yang)
is evaluated as (B B")
.
We know what B
does. It does this:
1. restore the stack - back to the point where yin=A and yang were being initialised.
2. display *
3. assign a continuation to yang - this time, it is B'"
The output is now @*@**@***
4. evaluate yin with the continuation value of yang (B'")
Since the stack was restored to the point where yin=A
, (yin yang)
is evaluated as (A B'")
.
.......
I think we have a pattern now.
Each time we call (yin yang)
we loop through a stack of B
continuations until we get back to when yin=A
and we display @
. The we loop through the stack of B
continuations writing a *
each time.
(I'd be really happy if this is roughly right!)
Thanks for the question.
I think at least half of the problem with understanding this puzzle is the Scheme syntax, which most are not familiar with.
First of all, I personally find the call/cc x
to be harder to comprehend than the equivalent alternative, x get/cc
. It still calls x, passing it the current continuation, but somehow is more amenable to being represented in my brain circuitry.
With that in mind, the construct (call-with-current-continuation (lambda (c) c))
becomes simply get-cc
. We?re now down to this:
(let* ((yin
((lambda (cc) (display #\@) cc) get-cc))
(yang
((lambda (cc) (display #*) cc) get-cc)))
(yin yang))
The next step is the body of the inner lambda. (display #\@) cc
, in the more familiar syntax (to me, anyway) means print @; return cc;
. While we?re at it, let?s also rewrite lambda (cc) body
as function (arg) { body }
, remove a bunch of parentheses, and change function calls to the C-like syntax, to get this:
(let* yin =
(function(arg) { print @; return arg; })(get-cc)
yang =
(function(arg) { print *; return arg; })(get-cc)
yin(yang))
It?s starting to make more sense now. It?s now a small step to rewrite this completely into C-like syntax (or JavaScript-like, if you prefer), to get this:
var yin, yang;
yin = (function(arg) { print @; return arg; })(get-cc);
yang = (function(arg) { print *; return arg; })(get-cc);
yin(yang);
The hardest part is now over, we?ve decoded this from Scheme! Just kidding; it was only hard because I had no previous experience with Scheme. So, let?s get to figuring out how this actually works.
Observe the strangely formulated core of yin and yang: it defines a function and then immediately calls it. It looks just like (function(a,b) { return a+b; })(2, 3)
, which can be simplified to 5
. But simplifying the calls inside yin/yang would be a mistake, because we?re not passing it an ordinary value. We?re passing the function a continuation.
A continuation is a strange beast at first sight. Consider the much simpler program:
var x = get-cc;
print x;
x(5);
Initially x
is set to the current continuation object (bear with me), and print x
gets executed, printing something like <ContinuationObject>
. So far so good.
But a continuation is like a function; it can be called with one argument. What it does is: take the argument, and then jump to wherever that continuation was created, restoring all context, and making it so that get-cc
returns this argument.
In our example, the argument is 5
, so we essentially jump right back into the middle of that var x = get-cc
statement, only this time get-cc
returns 5
. So x
becomes 5
, and the next statement goes on to print 5. After that we try to call 5(5)
, which is a type error, and the program crashes.
Observe that calling the continuation is a jump, not a call. It never returns back to where the continuation was called. That?s important.
If you followed that, then don?t get your hopes up: this part is really the hardest. Here?s our program again, dropping the variable declarations because this is pseudo-code anyway:
yin = (function(arg) { print @; return arg; })(get-cc);
yang = (function(arg) { print *; return arg; })(get-cc);
yin(yang);
The first time line 1 and 2 are hit, they are simple now: get the continuation, call the function(arg), print @
, return, store that continuation in yin
. Same with yang
. We?ve now printed @*
.
Next, we call the continuation in yin
, passing it yang
. This makes us jump to line 1, right inside that get-cc, and make it return yang
instead. The value of yang
is now passed into the function, which prints @
, and then returns the value of yang
. Now yin
is assigned that continuation that yang
has. Next we just proceed to line 2: get c/c, print *
, store the c/c in yang
. We now have @*@*
. And lastly, we go to line 3.
Remember that yin
now has the continuation from when line 2 was first executed. So we jump to line 2, printing a second *
and updating yang
. We now have @*@**
. Lastly, call the yin
continuation again, which will jump to line 1, printing a @
. And so on. Frankly, at this point my brain throws an OutOfMemory exception and I lose track of everything. But at least we got to @*@**
!
This is hard to follow and even harder to explain, obviously. The perfect way to do this would be to step through it in a debugger which can represent continuations, but alas, I don?t know of any. I hope you have enjoyed this; I certainly have.
Here is a detailed description of what happened in the execution of the yin-yang puzzle. Instead of frightening you with the details of the stack, I'm using evaluation context to describe the continuation. You will probably never understand the program if you examine the contents in the stack. You need their higher level semantic meaning to think clearly.
The formatting is a little crude here. You can visit my blog post on this for more readability:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;; round 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The original program is:
(let* ((yin
((lambda (cc) (display #\@) cc) (call/cc (lambda (c) c)))) ; C1
(yang
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c))))) ; C2
(yin yang))
;; Note there are two binding clauses, C1 and C2. We will now
;; discuss them seperately.
;; C1 prints @ and bind yin to the "current continuation" of the
;; first call/cc. Let's call this continuation yin1 (see below).
yin1=
(lambda (k)
(let* ((yin
((lambda (cc) (display #\@) cc) k))
(yang
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c)))))
(yin yang)))
;; Notice:
;; 1. This is just the standard way of representing a
;; continuation. Here the parameter "k" appear in the hole where
;; we "extracted" the first call/cc.
;; 2. We use new names such as yin1, yang1 in order to distinguish
;; the different ocurrence of the same name.
;; C2 prints * and bind yang to a continuation yang1:
yang1=
(lambda (k)
(let* ((yin yin1)
(yang
((lambda (cc) (display #*) cc) k)))
(yin yang)))
;; Notice:
;; 1. Please check how we can derive yang1 from the original
;; program and notice where we put the hole "k".
;; 2. Notice that because we are using let*, yin has already been
;; bound to yin1 at this point.
;; We can substituted the last yin with yin1, and use the
;; knowledge of compiler optimization, simplify the continuation
;; yang1 to:
yang1=
(lambda (k)
(display #*)
(yin1 k))
;; You can do without this simplification, but the simplification
;; reveals deeper meanings of the continuation. Now we can see
;; that this continuation is almost the same as yin1, except that
;; it does one extra thing: it prints a *. So we can summarize the
;; behavior of yang1 in words: "print a *, and then behave like
;; yin1".
;; Having bound yin and yang to the continuations, we have printed
;; '@*', and now the program looks like:
(let* ((yin yin1)
(yang yang1))
(yin yang))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;; round 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; We proceed to the application (yin yang), because yin and yang
;; are bound to yin1 and yang1, we have (yin yang) = (yin1 yang1).
;; Put yang1 into the "hole" of yin1, we have:
(let* ((yin
((lambda (cc) (display #\@) cc) yang1))
(yang
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c)))))
(yin yang))
;; Notice that we are almost back to the original program, except
;; instead of yin1, we have yang1 in its place. This is a good
;; sign of *recursion*.
;; The program will now: 1) print @ 2) bind yin to yang1 3) print
;; * 4) bind yang to a new continuation yang2:
yang2=
(lambda (k)
(let* ((yin yang1)
(yang
((lambda (cc) (display #*) cc) k)))
(yin yang)))
;; Similarly, yang2 simplifies to:
yang2=
(lambda (k)
(display #*)
(yang1 k))
;; Notice how yang2 and yang1 are *chained*. The behavior of yang2
;; can be summarized as "print a *, then behave like yang1".
;; Because yang1 means "print a *, then behave like yin1", we can
;; *compose* those two behaviors, and infer that yang2's behavior
;; is actually "print TWO *'s, then behave like yin1"! Indeed, you
;; can check this out when you expand yang2:
yang2=
(lambda (k)
(display #*)
((lambda (k)
(display #*)
(yin1 k))
k))
;; When invoked with a value v, this continuation will print out
;; TWO *'s, and call yin1 with v, thus behaving like yin1.
;; Now the program looks like:
(let* ((yin yang1)
(yang yang2))
(yin yang))
;; Now we need to evaluation (yin yang) = (yang1 yang2). Remember
;; that yang1 means "print a *, and then behave like yin1". Now
;; you can see that (yang1 yang2) actually means "prints a *, and
;; then invoke (yin1 yang2). This is why we see '@*@**' at this
;; point.
;; If you think you already got the idea, go to the bottom of this
;; article, otherwise go on for two more rounds.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;; round 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Invoke (yin1 yang2) and we get:
(let* ((yin
((lambda (cc) (display #\@) cc) yang2))
(yang
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c)))))
(yin yang))
;; This will 1) print @ 2) bind yin to yang2 3) print * 4) bind
;; yang to the contination
yang3=
(lambda (k)
(let* ((yin yang2)
(yang
((lambda (cc) (display #*) cc) k)))
(yin yang)))
;; which simplifies to:
yang3=
(lambda (k)
(display #*)
(yang2 k))
;; Notice (again) that the tiny difference between yang3 and yang2
;; and see how yang3, yang2, yang1 are chained. If you write it
;; out in full, it is:
yang3=
(lambda (k)
(display #*)
((lambda (k)
(display #*)
((lambda (k)
(display #*)
(yin1 k))
k))
k))
;; Similarly we can summarize this continuation in words as "print
;; THREE *'s, and then behave like yin1".
;; Now the program looks like:
(let* ((yin yang2)
(yang yang3))
(yin yang))
;; Here (yin yang) = (yang2 yang3). For a similar reason, this
;; means "print two *'s, then invoke (yin1 yang3)". This is why we
;; see '@*@**@***' at this point.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;; round 4 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Invoking (yin1 yang3):
(let* ((yin
((lambda (cc) (display #\@) cc) yang3))
(yang
((lambda (cc) (display #*) cc) (call/cc (lambda (c) c)))))
(yin yang))
;; It prints '@*', binds yin to yang3, binds yang to:
yang4=
(lambda (k)
(let* ((yin yang3)
(yang
((lambda (cc) (display #*) cc) k)))
(yin yang)))
;; I believe by now you see what yang4 means: "print four *'s, and
;; then behave like yin1"! So we arrive at:
(let* ((yin yang3)
(yang yang4))
(yin yang))
;; and we see '@*@**@***@****' before we invoke (yin1 yang4).
;; CONCLUSION:
;; You see the pattern of recursion? Here it is: (yin1 yangN) will
;; 1) print '@*' 2) print N additional *'s 3) and transit to (yin1
;; yang(N+1)). This is why you see the infinite string:
;; '@*@**@***@****@*****@******'.
I just got another (and better) answer to this question. I'm not sure whether people understand this one better than my first answer, so I created another answer here. I'll just let people vote for the best one :-)
The original program can be transformed into one without call/cc using some compiler optimizations. The details of the transformation is a little involved and you are referred to my blog post. I just give the final result here and explain how it works.
The final transformed program is:
(define c1
(lambda (k)
(display #\@)
(display #*)
(k (lambda (j)
(display #*)
(k j)))))
(define c2
(lambda (k)
(display #*)
(c1 k)))
(begin
(display #\@)
(display #*)
(c1 c2))
Here c1 is the continuation bound to yin, and c2 is the continuation bound to yang in the original program.
Try it. It will work the same as the original program. But now it doesn?t contain any call/cc?s and is much easier to understand.
For simplicity, let's inline c2 into the main program. Now c2 disappears.
(define c1
(lambda (k)
(display #\@)
(display #*)
(k (lambda (j)
(display #*)
(k j)))))
(begin
(display #\@)
(display #*)
(c1 (lambda (k)
(display #*)
(c1 k))))
Here is how this final program executes:
@* will be printed and we will invoke:
(c1 (lambda (k) (display #*) (c1 k)))
Inside the invocation, @* will be printed by the body of c1, and k is now bound to (lambda (k) (display #*) (c1 k)). So the program proceed to:
((lambda (k) (display #*) (c1 k)) (lambda (j) (display #*) ((lambda (k) (display #*) (c1 k)) j)))
It will print a *, and becomes:
(c1
(lambda (j)
(display #*)
((lambda (k)
(display #*)
(c1 k))
j)))
Now we have seen @@*
Notice that we are back to a call to c1! But this time the argument is different. If we simplify it a little, we get:
(c1 (lambda (j) (display #*) (display #*) (c1 j)))
I think you see what?s going on here. This time, c1 is called with ?When called, display TWO ?s, and then behave like c1 on the argument?. If we go on, the argument to c1 will be longer and longer, and each time adding an additional (display #*). So it will print @, and then @**, and so on.
This is why you see the infinite string: @@@@@**@* ...
I know that Lisp and Scheme programmers usually say that eval should be avoided unless strictly necessary. I?ve seen the same recommendation for several programming languages, but I?ve not yet seen a list of clear arguments against the use of eval. Where can I find an account of the potential problems of using eval?
For example, I know the problems of GOTO in procedural programming (makes programs unreadable and hard to maintain, makes security problems hard to find, etc), but I?ve never seen the arguments against eval.
Interestingly, the same arguments against GOTO should be valid against continuations, but I see that Schemers, for example, won?t say that continuations are "evil" -- you should just be careful when using them. They?re much more likely to frown upon code using eval than upon code using continuations (as far as I can see -- I could be wrong).
Edit: WOW, that was fast! Three answers in less than five minutes! So, the answers so far are:
So far, it seems that if I generate code (and not directly use anything from user input directly); if I know what environment eval will be run; and if I'm not expecting super-fast code, then eval is OK.
There are several reasons why one should not use EVAL.
The main reason for beginners is: you don't need it.
Example (assuming Common Lisp):
EVAL an expression with different operators:
(let ((ops '(+ *)))
(dolist (op ops)
(print (eval (list op 1 2 3)))))
That's better written as:
(let ((ops '(+ *)))
(dolist (op ops)
(print (funcall op 1 2 3))))
There are lots of examples where beginners learning Lisp think they need EVAL, but they don't need it - since expressions are evaluated and one can also evaluate the function part. Most of the time the use of EVAL shows a lack of understanding of the evaluator.
It is the same problem with macros. Often beginners write macros, where they should write functions - not understanding what macros are really for and not understanding that a function already does the job.
It often is the wrong tool for the job to use EVAL and it often indicates that the beginner does not understand the usual Lisp evaluation rules.
If you think you need EVAL
, then check if something like FUNCALL
, REDUCE
or APPLY
could be used instead.
Q: do I really need eval or does the compiler/evaluator already what I really want?
The main reasons to avoid EVAL for slightly more advanced users:
you want to make sure that your code is compiled, because the compiler can check code for many problems and generates faster code, sometimes MUCH MUCH MUCH (that's factor 1000 ;-))faster code
code that's constructed and needs to be evaluated can't be compiled as early as possible.
eval of arbitrary user input opens up security problems
some use of evaluation with EVAL can happen at the wrong time and create build problems
To explain the last point with a simplified example:
(defmacro foo (a b)
(list (if (eql a 3) 'sin 'cos) b))
So, I may want to write a macro that based on the first parameter uses either SIN or COS.
(foo 3 4) does (sin 4) and (foo 1 4) does (cos 4).
Now we may have:
(foo (+ 2 1) 4)
This does not give the desired result.
One then may want to repair the macro FOO by EVALUATING the variable:
(defmacro foo (a b)
(list (if (eql (eval a) 3) 'sin 'cos) b))
(foo (+ 2 1) 4)
But then this still does not work:
(defun bar (a b)
(foo a b))
The value of the variable is just not known at compile time.
A general important reason to avoid EVAL: it is often used for ugly hacks.
Eval is fine, as long as you know EXACTLY what is going into it. Any user input going into it MUST be checked and validated and everything. If you don't know how to be 100% sure, then don't do it.
Basically, a user can type in any code for the language in question, and it will execute. You can imagine for yourself how much damage he can do.
eval
(in any language) is not evil in the same way that a chainsaw is not evil. It is a tool. It happens to be a powerful tool that, when misused, can sever limbs and eviscerate (metaphorically speaking), but the same can be said for many tools in a programmer's toolbox including:
goto
and friendsIf you find yourself having to use any of these powerful, potentially dangerous tools ask yourself three times "why?" in a chain. For example:
"Why do I have to use
eval
?" "Because of foo." "Why is foo necessary?" "Because ..."
If you get to the end of that chain and the tool still looks like it's the right thing to do, then do it. Document the Hell out of it. Test the Hell out of it. Double-check correctness and security over and over and over again. But do it.
IMO, this question is not specific to LISP. Here is an answer on the same question for PHP, and it applies to LISP, Ruby, and other other language that has an eval:
The main problems with eval() are:
- Potential unsafe input. Passing an untrusted parameter is a way to fail. It is often not a trivial task to make sure that a parameter (or part of it) is fully trusted.
- Trickyness. Using eval() makes code clever, therefore more difficult to follow. To quote Brian Kernighan "Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it"
The main problem with actual use of eval() is only one:
- inexperienced developers who use it without enough consideration.
Taken from here.
I think the trickyness piece is an amazing point. The obsession with code golf and concise code has always resulted in "clever" code (for which evals are a great tool). But you should write your code for readability, IMO, not to demonstrate that you're a smarty and not to save paper (you won't be printing it anyway).
Then in LISP there's some problem related to the context in which eval is run, so untrusted code could get access to more things; this problem seems to be common anyway.
"When should I use eval
?" might be a better question.
The short answer is "when your program is intended to write another program at runtime, and then run it". Genetic programming is an example of a situation where it likely makes sense to use eval
.
Like the GOTO "rule": If you don't know what you are doing, you can make a mess.
Besides from only building something out of known and safe data, there's the problem that some languages/implementations can't optimize the code enough. You could end up with interpreted code inside eval
.
The canonical answer is to stay away. Which I find weird, because it's a primitive, and of the seven primitives (the others being cons, car, cdr, if, eq and quote), it gets far and away the least amount of use and love.
From On Lisp: "Usually, calling eval explicitly is like buying something in an airport gift-shop. Having waited till the last moment, you have to pay high prices for a limited selection of second-rate goods."
So when do I use eval? One normal use is to have an REPL within your REPL by evaluating (loop (print (eval (read))))
. Everyone is fine with that use.
But you can also define functions in terms of macros that will be evaluated after compilation by combining eval with backquote. You go
(eval (macro ,arg0 ,arg1 ,arg2))))
and it will kill the context for you.
Swank (for emacs slime) is full of these cases. They look like this:
(defun toggle-trace-aux (fspec &rest args)
(cond ((member fspec (eval '(trace)) :test #'equal)
(eval `(untrace ,fspec))
(format nil "~S is now untraced." fspec))
(t
(eval `(trace ,@(if args `(:encapsulate nil) (list)) ,fspec ,@args))
(format nil "~S is now traced." fspec))))
I don't think it's a filthy hack. I use it all the time myself to reintegrate macros into functions.
Eval is just unsecure. For example you have following code:
eval('
hello('.$_GET['user'].');
');
Now user comes to your site and enters url http://example.com/file.php?user=);$is_admin=true;echo(
Then the resulting code would be:
hello();$is_admin=true;echo();
Another couple of points on Lisp eval :
I note that Scheme and Lisp (I guess) support circular lists, and I have used circular lists in C/C++ to 'simplify' the insertion and deletion of elements, but what are they good for?
Scheme ensures that they can be built and processed, but for what?
Is there a 'killer' data structure that needs to be circular or tail-circular?
Saying it supports 'circular lists' is a bit much. You can build all kinds of circular data structures in Lisp. Like in many programming languages. There is not much special about Lisp in this respect. Take your typical 'Algorithms and Datastructure' book and implement any circular data structure: graphs, rings, ... What some Lisps offer is that one can print and read circular data structures. The support for this is because in typical Lisp programming domains circular data structures are common: parsers, relational expressions, networks of words, plans, ...
It is quite common that data structures contain cycles. Real 'circular lists' are not that often used. For example think of a task scheduler which runs a task and after some time switches to the next. The list of tasks can be circular so that after the 'last' task the scheduler takes the 'first' task. In fact there is no 'last' and 'first' - it is just a circular list of tasks and the scheduler runs them without end. You could also have a list of windows in a window system and with some key command you would switch to the next window. The list of windows could be circular.
Lists are useful when you need a cheap next operation and the size of the data structure is unknown in advance. You can always add another node to the list or remove a node from a list. Usual implementations of lists make getting the next node and adding/removing an item cheap. Getting the next element from an array is also relatively simple (increase the index, at the last index go to the first index), but adding/removing elements usually needs more expensive shift operations.
Also since it is easy to build circular data structures, one just might do it during interactive programming. If you then print a circular data structure with the built-in routines it would be a good idea if the printer can handle it, since otherwise it may print a circular list forever...
For example a double linked list data structure is "circular" in the Scheme/LISP point of view, i.e. if you try to print the cons-structure out you get backreferences, i.e. "cycles". So it's not really about having data structures that look like "rings", any data structure where you have some kind of backpointers is "circular" from the Scheme/LISP perspective.
A "normal" LISP list is single linked, which means that a destructive mutation to remove an item from inside the list is an O(n) operation; for double linked lists it is O(1). That's the "killer feature" of double linked lists, which are "circular" in the Scheme/LISP context.
Adding and removing elements to the beginning of a list is cheap. To add or remove an element from the end of a list, you have to traverse the whole list.
With a circular list, you can have a sort of fixed-length queue.
Setup a circular list of length 5:
> (import (srfi :1 lists))
> (define q (circular-list 1 2 3 4 5))
Let's add a number to the list:
> (set-car! q 6)
Now, let's make that the last element of the list:
> (set! q (cdr q))
Display the list:
> (take q 5)
(2 3 4 5 6)
So you can view this as a queue where elements enter at the end of the list and are removed from the head.
Let's add 7 to the list:
> (set-car! q 7)
> (set! q (cdr q))
> (take q 5)
(3 4 5 6 7)
Etc...
Anyways, this is one way that I've used circular-lists.
I use this technique in an OpenGL demo which I ported from an example in the Processing book.
Ed
Have you ever played Monopoly?
Without playing games with counters and modulo and such, how would you represent the Monopoly board in a computer implementation of the game? A circular list is a natural.
One use of circular lists is to "repeat" values when using the srfi-1 version of map. For example, to add val
to each element of lst
, we could write:
(map + (circular-list val) lst)
For example:
(map + (circular-list 10) (list 0 1 2 3 4 5))
returns:
(10 11 12 13 14 15)
Of course, you could do this by replacing +
with (lambda (x) (+ x val))
, but sometimes the above idiom can be handier. Note that this only works with the srfi-1 version of map, which can accept lists of different sizes.
I understand very clearly the difference between functional and imperative programming techniques. But there's a widespread tendency to talk of "functional languages", and this really confuses me.
Of course some languages like Haskell are more hospitable to functional programming than other languages like C. But even the former does I/O (it just keeps it in a ghetto). And you can write functional programs in C (it's just absurdly harder). So maybe it's just a matter of degree.
Still, even as a matter of degree, what does it mean when someone calls Scheme a "functional language"? Most Scheme code I see is imperative. Is it just that Scheme makes it easy to write in a functional style if you want to? So too do Lua and Python. Are they "functional languages" too?
I'm (really) not trying to be a language cop. If this is just a loose way of talking, that's fine. I'm just trying to figure out whether it does have some definite meaning (even if it's a matter-of-degree meaning) that I'm not seeing.
Among people who study programming languages for a living, "functional programming language" is a pretty weakly bound term. There is a strong consensus that:
A significant minority also reserve the term "functional language" for languages which are:
as in languages like Agda, Clean, Coq, and Haskell.
Beyond that, what's considered a functional programming language is often a matter of intent, that is, whether is designers want it to be called "functional".
Perl and Smalltalk are examples of languages that support first-class functions but whose designers don't call them functional. Objective Caml is an example of a language that is called functional even though it has a full object system with inheritance and everything.
Languages that are called "functional" will tend to have features like the following (taken from http://stackoverflow.com/questions/214913/defining-point-of-functional-programming/215414#215414):
The more a particular programming language has syntax and constructs tailored to making the various programming features listed above easy/painless to express & implement, the more likely someone will label it a "functional language".
I would say that a functional language is any language that allows functional programming without undue pain.
I like @Randolpho's answer. With regards to features, I might cite the list here:
http://stackoverflow.com/questions/214913/defining-point-of-functional-programming/215414#215414
namely
The more a particular programming language has syntax and constructs tailored to making the various FP features listed above easy/painless to express & implement, the more likely someone will label it a "functional language".
Jane Street's Brian Hurt wrote a very good article on this a while back. The basic definition he arrived at is that a functional programming language is a language that models the lambda calculus. Think about what languages are widely agreed to be functional and you'll see that this is a very practical definition.
Lisp was a primitive attempt to model the lambda calculus, so it fits this definition ? though since most implementations don't stick very closely to the ideas of lambda calculus, they're generally considered to be mixed-paradigm or at best weakly functional.
This is also why a lot of people bristle at languages like Python being called functional. Python's general philosophy is unrelated to lambda calculus ? it doesn't encourage this way of thinking at all ? so it's not a functional language. It's a Turing machine with first-class functions. You can do functional-style programming in Python, yes, but the language does not have its roots in the same math that functional languages do. (Incidentally, Guido van Rossum himself agrees with this description of the language.)
A language (and platform) that promotes Functional Programming as a means of fully leveraging the capabilities of the said platform.
A language that makes it a lot harder to create functions with side effects than without side effects. The same counts for mutable/immutable data structures.
You can do functional style programming in any language. I try as much as possible.
Python, Linq all promote functional style programming.
A pure functional language like Haskell requires you to do all your computations using mathematical functions, functions that do not modify anything, they just return values.
In addition, functional languages typically allow you to write higher order functions, functions that take functions as arguments and/or return types.
I think the same question can be asked about "OOP languages". After all, you can write object oriented programs in C (and it's not uncommon to do so). But C doesn't have any built-in language constructs to enable OOP. You have to do OOP "by hand" without much help from the compiler. That's why it's usually not considered an OOP language. I think this distinction can be applied to "functional languages", too: For example, it's not uncommon to write functional code in C++ (think about STL functions like std::count_if
or std::transform
). But C++ (for now) lacks built-in language features that enable functional programming, like lambdas. (Let's ignore boost::lambda for the sake of the argument.)
So, to answer your question, I'd say although it's possible to write function programs in each of these languages:
Haskell for one have different types for functions with side-effects and those without.
That's a pretty good discriminating property for being a 100% functional language, at least IMHO.
I wrote a (pretty long) analysis once on why the term 'functional programming language' is meaningless which also tries to explain why for instance 'functions' in Haskell are completely different from 'functions' in Lisp or Python: http://blog.nihilarchitect.net/archives/289/on-functional-programming/
Things like 'map' or 'filter' are for a large part also implementable in C for instance.
According to SICP section 1.2.6, exercise 1.22:
Most Lisp implementations include a primitive called runtime that returns an integer that specifies the amount of time the system has been running (measured, for example, in microseconds).
I'm using DrScheme, where runtime doesn't seem to be available, so I'm looking for a good substitute. I found in the PLT-Scheme Reference that there is a current-milliseconds primitive. Does anyone know if there's a timer in Scheme with better resolution?
current-milliseconds
is a function that returns the current millisecond count from the system, but it might decrease. current-inexact-milliseconds
is similar, but returns a guaranteed-to-increase floating point number.
There are also a bunch of similar functions that you can find on that page, but if all you need is to time a certain function, then just use (time
expr) and it will print out the time it took to evaluate the expression.
Another thing that is relevant here is the profiler, in case you need some more verbose analysis of your code.
Can somebody rewrite this (plt) Scheme code into Clojure?
(define (f n)
(printf "(f ~a)~n" n)
(g n))
(define (g n)
(printf "(g ~a)~n" n)
(h n))
(define (h n)
(printf "(h ~a)~n" n)
(f (+ n 1)))
In such a way as to not collapse the procedures f, g, and h together and to allow the code to run indefinitely without crashing?
Use a trampoline:
(declare f)
(defn h [n]
(println "(h " n ")")
#(f (+ n 1)))
(defn g [n]
(println "(g " n ")")
#(h n))
(defn f [n]
(println "(f " n ")")
#(g n))
Kick it off with:
(trampoline #(f 0))
It's not as nice as Scheme but it gets the job done. I've had this code running on my pc in the background for about 5 hours now and the memory usage is flat.
There is Gambit scheme, MIT scheme, PLT scheme, chicken scheme, bigloo, larceny, ...; then there are all the lisps.
Yet, there's not (to my knowledge) a single popular scheme/lisp on LLVM, even though LLVM provides lots of nice things like:
So why is it that there isn't a good scheme/lisp on LLVM?
There's no LLVM-targeted Lisp or Scheme because you haven't written one yet.
Yes.
You.
The person reading this answer.
It's your fault.
LLVM provides a lot, but it's still only a small part of the runtime a functional language needs. And C FFI calls are uncomplicated because LLVM leaves memory management to be handled by someone else. Interacting the Garbage Collector is what makes FFI calls difficult in languages such as Scheme.
You might be interested in HLVM, but it's still more than experimental at this point.
One thing to keep in mind is that many of these implementations have C FFIs and native-code compilers that significantly predate LLVM.
There's a very small and apparently unoptimised Scheme compiler here:
http://www.ida.liu.se/~tobnu/scheme2llvm/
Taking your question literally,
I think that it could be a lot of fun for someone to build an LLVM-based Scheme compiler. The Scheme compilers in SICP and PAIP are both good examples.
there's not (to my knowledge) a single popular scheme/lisp on LLVM
Currently, llvm-gcc
is the nearest thing to a popular implementation of any language on LLVM. In particular, there are no mature LLVM-based language implementations with garbage collection yet. I am sure LLVM will be used as the foundation for lots of exciting next-generation language implementations but that will take a lot of time and effort and it is early days for LLVM in this context.
My own HLVM project is one of the only LLVM-based implementations with garbage collection and its GC is multicore-capable but loosely bound: I used a shadow stack for an "uncooperative environment" rather than hacking the C++ code in LLVM to integrate real stack walking.
GHC is experimenting with a scheme backend and getting really exciting preliminary results over their native code compiler. Granted, that's haskell. But they've recently pushed new changes into LLVM making tail calls easier IIRC. This could be good for some scheme implementation.
I ultimately want to learn Clojure, but I've found learning resources for Clojure to be scarce for people of little experience...
I'm wondering if it would be beneficial to start with Scheme (read The Little Schemer and SICP) or some other Lisp variant.
My only other programming experience is with Java and Python (which is pretty minimal). I ultimately want to study Clojure in my off-time since I find it fascinating and my college classes use Java.
Stuart Halloway's book is an excellent resource if you're just starting out. There are couple new books in the works that are available for download in an early form (Joy of Clojure, Clojure in Action, etc.).
Also I highly recommend the mailing list as well as the irc channel. Especially the irc channel, there's a lot of helpful people there and questions are usually answered pretty quickly.
While learning Scheme is certainly helpful (now that I've played around with Clojure for a year) I would also say that's unnecessary for learning and having fun with Clojure.
I'd go with Scheme. It's simple, minimalistic, extremely consistent and it could be argued that it's more functional than LISP (which is nice if you want to learn a new paradigm). I've also found Scheme IDEs much more user-friendly than LISP's (PLT Scheme is a good one).
In addition, there are plenty of excellent resources on either Common Lisp or Scheme, so that shouldn't be the deciding point.
Common Lisp using Practical Common Lisp.
I started with the book Practical Common Lisp, and use Emacs & SLIME with Steel Bank Common Lisp.
I second dnolen's recommendation of grabbing S. Halloway's book (I bought it, and it's great) and learning Clojure right off the bat.
I worked my way (partly) through SICP a while back and really struggled. I found Clojure pleasantly simple after that, possibly because I'd already had a bit of experience with Scheme. Still, especially for someone who's already familiar with Java, I'd say it's cool to jump right into Clojure. Rationale:
(cond (condition) (value) (condition) (value))
rather than(cond ((condition) (value)) ((condition) (value)))
let
and loop
, etc. are in [square brackets] rather than (parentheses). Makes function definitions easier to read IMHO.(defn)
. You of all people should appreciate that ;)A recommend-worthy first tutorial is Moxley Stratton's Clojure Tutorial. There's also a huge SO discussion on Clojure tutorials that yields up a lot of links.
Something I found enormously helpful with my first steps in Clojure was the Clojure Cheat Sheet. This addresses the common case where you know roughly what you want to do, but not which function to use. One would wish other languages would adopt this concept. Having found a likely function for your need, you can get more documentation on it using (doc <name>)
in a Clojure REPL.
Your mileage may vary, of course; but by the time Amazon delivered Programming Clojure I had already learned enough Clojure from the Web that the book was more a source of "the big picture" than a tutorial for me. But certainly one could do a lot worse than learn Clojure programming from that book.
Possibly it's apparent from the above that I'm enthusiastic about Clojure. I find it refreshingly different after years of Java, and powerful enough to accomplish whatever itches me. I even donated to the project :)
At the risk of regretting this later, I also offer (free) beginning Clojure assistance and tutoring via email, Google Chat or Wave. My mail address should be pretty easy to guess.
I suggest that you start with Scheme and then move on to Common Lisp, as Scheme is simpler. As you are new to Lisp, a good starting point will be Teach yourself Scheme in Fixnum Days by Dorai Sitaram. Once you are comfortable with the basics of the language, you can start working with SICP.
For Common Lisp, you can follow a similar path: start with a simple tutorial based approach, become comfortable writing small programs then read a book that will teach you advanced concepts. I suggest the following books to learn Common Lisp. Take care to read them in the given order: COMMON LISP: An Interactive Approach (Stuart C. Shapiro), Successful Lisp (David B. Lamkins), Practical Common Lisp (Peter Seibel) and On Lisp (Paul Graham).
Paul Graham has also written ANSI Common Lisp, which is a good reference.
Learning something new is almost always good. And if you only know Java and Python, then learning a functional programming language will stretch your mind.
Scheme is among the simplest of LISP variants, and it's well-documented. Go for it!
There really only are two common variants, Scheme and Common Lisp. They are very similar, both have a variety of implementations, and switching between the two is easy enough. If you want to write an application, I would suggest CL because of the superior libraries. If you want to learn FP style, go with Scheme.
In addition to the books mentioned here, I also suggest "Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp" by Peter Norvig.
I was in your position, and split my attention between Scheme and Common Lisp. Looking back now I think that (for the purposes of learning Clojure, as opposed to personal development) I would've been better off focusing on Common Lisp, with Practical Common Lisp and PG's On Lisp.
Now that there are actual books focusing on Clojure, you should definitely go with one of those. Joy of Clojure is a great book, and 4clojure.com is a good way to get some practice solving puzzles with Clojure.
I would go with LFE, the speed you learn is proportional to the amount of bugs you experience. Choosing LFE will give you both Erlang and Lisp at the same time.
For the visual/audo learners i highly recomend Righ Hicky's video series on blip.tv
Clojure for java programmers and then just hit the REPL. The rest of the series follows naturally and can really get the creative juices flowing. PCL (Practical Common Lisp) is an exciting book though some of it is not really applicable to clojure. I highly recommend the chapter on Macros.
ANSI Common Lisp - OnLisp ANSI Common Lisp
newLISP - hmm..., because it is modern (and the only ??) LISP-based general scripting language ? (I'm not counting AutoLISP and such, because they are domain specific scripting langs). So if you will like it very much maybe in the future you will drop Python through the window :-))
To begin, not only are there two main dialects of the language (Common Lisp and Scheme), but each of the dialects has many individual implementations. For example, Chicken Scheme, Bigloo, etc... each with slight differences.
From a modern point of view this is strange, as languages these days tend to have definitive implementations/specs. Think Java, C#, Python, Ruby, etc, where each has a single definitive site you can go to for API docs, downloads, and such. Of course Lisp predates all of these languages. But then again, even C/C++ are standardized (more or less).
Is the fragmentation of this community due to the age of Lisp? Or perhaps different implementations/dialects are intended to solve different problems? I understand there are good reasons why Lisp will never be as united as languages that have grown up around a single definitive implementation, but at this point is there any good reason why the Lisp community should not move in this direction?
The Lisp community is fragmented, but everything else is too.
Why are there so many Linux distributions?
Why are there so many BSD variants? OpenBSD, NetBSD, FreeBSD, ... even Mac OS X.
Why are there so many scripting languages? Ruby, Python, Rebol, TCL, PHP, and countless others.
Why are there so many Unix shells? sh, csh, bash, ksh, ...?
Why are there so many implementations of Logo (>100), Basic (>100), C (countless), ...
Why are there so many variants of Ruby? Ruby MRI, JRuby, YARV, MacRuby, HotRuby?
Python may have a main site, but there are several slightly different implementations: CPython, IronPython, Jython, Python for S60, PyPy, Unladen Swallow, CL-Python, ...
Why is there C (Clang, GCC, MSVC, Turbo C, Watcom C, ...), C++, C#, Cilk, Objective-C, D, BCPL, ... ?
Just let some of them get fifty and see how many dialects and implementations it has then.
I guess Lisp is diverse, because every language is diverse or gets diverse. Some start with a single implementation (McCarthy's Lisp) and after fifty years you got a zoo. Common Lisp even started with multiple implementations (for different machine types, operating systems, with different compiler technology, ...).
Nowadays Lisp is a family of languages, not a single language. There is not even consensus what languages belong to that family or not. There might be some criteria to check (s-expressions, functions, lists, ...), but not every Lisp dialect supports all these criteria. The language designers have experimented with different features and we got many, more or less, Lisp-like languages.
If you look at Common Lisp, there are about three or four different active commercial vendors. Try to get them behind one offering! Won't work. Then you have a bunch of active open source implementations with different goals: one compiles to C, another one is written in C, one tries to have a fast optimizing compiler, one tries to have some middlle ground with native compilation, one is targeting the JVM ... and so on. Try to tell the maintainers to drop their implementations!
Scheme has around 100 implementations. Many are dead, or mostly dead. At least ten to twenty are active. Some are hobby projects. Some are university projects, some are projects by companies. The users have diverse needs. One needs a real-time GC for a game, another one needs embedding in C, one needs only barebones constructs for educational purposes, and so on. How to tell the developers to keep from hacking their implementation.
Then there are some who don't like Commmon Lisp (too big, too old, not functional enough, not object oriented enough, too fast, not fast enough, ...). Some don't like Scheme (too academic, too small, does not scale, too functional, not functional enough, no modules, the wrong modules, not the right macros, ...).
Then somebody needs a Lisp combined with Objective-C, then you get Nu. Somebody hacks some Lisp for .net. Then you get some Lisp with concurrency and fresh ideas, then you have Clojure.
It's language evolution at work. It is like the cambrian explosion (when lots of new animals appeared). Some will die, others will live on, some new will appear. At some point in time some dialects appear that pick up the state of art (Scheme for everything with functional programming in Lisp in the 70s/80s and Common Lisp for everything MacLisp-like in the 80s) - that causes some dialects to disappear mostly (namely Standard Lisp, InterLisp, and others).
Common Lisp is the alligator of Lisp dialects. It is a very old design (hundred million years) with little changes, looks a little bit frightening, and from time to time it eats some young...
If you want to know more, The Evolution of Lisp (and the corresponding slides) is a very good start!
I think it is because "Lisp" is such a broad description of a language. The only common thing between all the lisps that I know is most things are in brackets, and uses prefix function notation. Eg
(fun (+ 3 4))
However nearly everything else can vary between implementations. Scheme and CL are completely different languages, and should be considered like that.
I think calling the lisp community fragmented is like calling the "C like" community fragmented. It has c,c++,d,java,c#, go, javascript, python and many other languages which I can't think of.
In summary: Lisp is more of a language property (like garbage collection, static typing) than an actual language implementation, so it is completely normal that there are many languages that have the Lisp like property, just like many languages have garbage collection.
I think it's because Lisp was born out of, and maintains the spirit of the hacker culture. The hacker culture is to to take something and make it "better" according to your belief in "better".
So when you have a bunch of opinionated hackers and a culture of modification, fragmentation happens. You get Scheme, Common Lisp, ELISP, Arc. These are all pretty different languages, but they're all "Lisp" at the same time.
Now why is the community fragmented? Well, I'll blame time and maturity on that. The language is 50 years old! :-)
Scheme and Common Lisp are standardized. SBCL seems like the defacto open source lisp and there are plenty of examples out there on how to use it. It's fast and free. ClozureCL also looks pretty darn good.
PLT Scheme seems like the defacto open source scheme and there are plenty of examples out there how to use it. It's fast and free.
The CL HyperSpec seems as good as the JavaDoc to me.
As far as community fragmentation I think this has little to standards or resources. I think this has far more to do with what has been a relatively small community until recently.
Clojure I think has a good chance to become The Lisp for the new generation of coders.
Perhaps my point is a very popular implementation is all that is required to give the illusion of a cohesive community.
LISP is not nearly as fragmented as BASIC.
There are so many dialects and versions of BASIC out there I have lost count.
Even the most commonly used implementation (MS VB) is different between versions.
The fact that there are many implementations of Common LISP should be considered a good thing. In fact, given that there are roughly the same number of free implementations of Common LISP as there are free implementations of C++ is remarkable, considering the relative popularity of the languages.
Free Common LISP implementations include CMU CL, SBCL, OpenMCL / Clozure CL, CLISP, GCL and ECL.
Free C++ implementations include G++ (with Cygwin and MinGW32 variants), Digital Mars, Open Watcom, Borland C++ (legacy?) and CINT (interpreter). There are also various STL implementations for C++.
With regards to Scheme and Common LISP, although admittedly, an inaccurate analogy, there are times when I would consider Scheme is to Common LISP what C is to C++, i.e. while Scheme and C are small and elegant, Common LISP and C++ are large and (arguably) more suited for larger applications.
Two possible contributing factors:
Lisp languages aren't hugely popular in comparison to other languages like C/C++/Ruby and so on - that alone may give the illusion of a fragmented community. There may be equal fragmentation in the other language-communities, but a larger community will have larger fragments..
Lisp languages are easier than most to implement. I've seen many, many "toy" Lisp implementations people have made for fun, many "proper" Lisp implementations to solve specific tasks. There are far more Lisp implementations than there are, say, Python interpreters (I'm aware of about.. 5, most of which are generally interchangeable)
There are promising projects like Clojure, which is a new language, with a clear goal (concurrency), without much "historical baggage", easy to install/setup, can piggyback on Java's library "ecosystem", has a good site with documentation/libraries, and has an official mailing list. This pretty much checks off every issue I encountered while trying to learn Common Lisp a while ago, and encourages a more centralised community.
My point of view is that Lisp is a small language so it is easy to implement (compare to Java, C#, C, ...)
Having many implementations is beneficial, because each implementation is optimal in unique places. And modern mainstream languages don't have one implementation anyway. Think about Python: its main implementation is CPython, but thanks to JPython you can run Python on the JVM too; thanks to Stackless Python you can have massive concurrency thanks to microthreads; etc. Such implementations will be encompatible in some ways: JPython integrates seamlessly with Java, whilst CPython doesn't. Same for Ruby.
What you don't want is having many implementations which are incompatible to the bone. That's the case with Scheme, where you can't share libraries among implementations without rewriting a lot of code, because Schemers can't agree on how to import/export libraries. Common Lisp libraries, OTOH, because of standardization in core areas, are more likely to be portable, and facilities exist to conditionally write code handling each implementation's peculiarities. Actually, nowadays you may say that Common Lisp is defined by its implementations (think about the ASDF package installation library), just like mainstream languages.
While reading "The Seasoned Schemer" I've begun to learn about letrec
. I understand what it does (can be duplicated with a Y-Combinator) but the book is using it in lieu of recurring on the already define
d function operating on arguments that remain static.
An example of an old function using the define
d function recurring on itself (nothing special):
(define (substitute new old lat)
(cond
((null? l) '())
((eq? (car l) old)
(cons new (substitute new old (cdr l))))
(else
(cons (car l) (substitute new old (cdr l))))))
Now for an example of that same function but using letrec
:
(define (substitute new old lat)
(letrec
((replace
(lambda (l)
(cond
((null? l) '())
((eq? (car l) old)
(cons new (replace (cdr l))))
(else
(cons (car l) (replace (cdr l))))))))
(replace lat)))
Aside from being slightly longer and more difficult to read I don't know why they are rewriting functions in the book to use letrec. Is there a speed enhancement when recurring over a static variable this way because you don't keep passing it??
Is this standard practice for functions with arguments that remain static but one argument that is reduced (such as recurring down the elements of a list)?
Some input from more experienced Schemers/LISPers would help!
So you have a few answers that cover the readability issue, which should be fine. But one question that is unclear is whether there are any performance issues. On a shallow look, it seems that the letrec
version, like the named-let
one (which is really the same) should be faster since there are less arguments to pass around in the loop. However, in practice compilers can do all kinds of optimizations behind your back, like figure out that the loop in the plain version passes the first two arguments unchanged, and turn it into a single-argument loop with the first one. Instead of showing you the numbers on a particular system, here is a PLT module that you can run to time four different versions, and you can easily add more to try out other variations. The short summary is that on my machine, the named-let
version is slightly faster, and making it tail-recursive has a larger overall benefit.
#lang scheme
;; original version
(define (substitute1 new old l)
(cond [(null? l) '()]
[(eq? (car l) old) (cons new (substitute1 new old (cdr l)))]
[else (cons (car l) (substitute1 new old (cdr l)))]))
;; letrec version (implicitly through a named-let)
(define (substitute2 new old l)
(let loop ([l l])
(cond [(null? l) '()]
[(eq? (car l) old) (cons new (loop (cdr l)))]
[else (cons (car l) (loop (cdr l)))])))
;; making the code a little more compact
(define (substitute3 new old l)
(let loop ([l l])
(if (null? l)
'()
(cons (let ([fst (car l)]) (if (eq? fst old) new fst))
(loop (cdr l))))))
;; a tail recursive version
(define (substitute4 new old l)
(let loop ([l l] [r '()])
(if (null? l)
(reverse r)
(loop (cdr l)
(cons (let ([fst (car l)]) (if (eq? fst old) new fst)) r)))))
;; tests and timings
(define (rand-list n)
(if (zero? n) '() (cons (random 10) (rand-list (sub1 n)))))
(for ([i (in-range 5)])
(define l (rand-list 10000000))
(define new (random 10))
(define old (random 10))
(define-syntax-rule (run fun)
(begin (printf "~a: " 'fun)
(collect-garbage)
(time (fun new old l))))
;; don't time the first one, since it allocates a new list to use later
(define new-list (substitute1 new old l))
(unless (and (equal? (run substitute1) new-list)
(equal? (run substitute2) new-list)
(equal? (run substitute3) new-list)
(equal? (run substitute4) new-list))
(error "poof"))
(newline))
Regarding you specific example: Personally I find the letrec
version easier to read: you define a recursive helper function and you call it in the body of the top-level function. The main difference between the two forms is that in the letrec
form you don't have to specify the static arguments over and over again in the recursive calls, which I find to be cleaner.
If the code is compiled, avoiding the passing of the static arguments on each recursive function call will probably also provide a small performance benefit in this case since the caller avoids having to copy the arguments into the new stack frame. If the recursive function call was in the tail position, the compiler might be clever enough to avoid copying the arguments on the stack over and over again.
Similarly if the code is interpreted, having fewer arguments in the recursive calls will be faster.
More generally, one of the main benefits of letrec
, which I don't think you mentioned above, is the fact that it allows for mutually recursive function definitions. I'm quite inexperienced with scheme, but as far as I understand, this is one of the main features of the letrec
form compared to e.g. define
.
For one thing, the letrec
version allows you to use the function even if its global name is reset to something else, e.g.
(define substitute
; stuff involving letrec
)
(define sub substitute)
(set! substitute #f)
Then sub
will still work, whereas it wouldn't with the non-letrec
version.
As for performance and readability, the latter is probably a matter of taste, while the former should not differ observably (though I am not really qualified to insist on this being so, and also it's implementation-dependent anyway).
Also, I'd actually use named let
personally:
(define (substitute new old lat) ; edit: fixed this line
(let loop (
; whatever iteration variables are needed + initial values
)
; whatever it is that substitute should do at each iteration
))
I find it more readable this way. YMMV.
I have been working alongside The Little Schemer to learn Scheme and using PLT-Scheme for my environment.
The Little Schemer has helped me tremendously with recursion (it is straightforward for me now) but I'm stuck on a portion of the book that introduces "collectors" and calls the function as a whole a continuation.
Here is the example code they have used. I understand the recursive elements but I am stuck, in particular on the lambda functions - my mind can't follow the path and how the arguments for that lambda function are set (since their only call is to call them again in recursion, there is no concrete use within the function body).
If someone could more-or-less give me a break down of the path of computation through the recursion of the function into the lambda collectors, that may help me.
;; Build a nested list of even numbers by removing the odd ones from its
;; argument and simultaneously multiply the even numbers and sum the odd
;; numbers that occur in its argument.
(define (even-only-collector l col)
(cond
((null? l)
(col (quote ()) 1 0))
((atom? (car l))
(cond
((even? (car l))
(even-only-collector (cdr l)
(lambda (newl p s)
(col (cons (car l) newl)
(* (car l) p) s))))
(else
(even-only-collector (cdr l)
(lambda (newl p s)
(col newl
p (+ (car l) s)))))))
(else
(even-only-collector (car l)
(lambda (al ap as)
(even-only-collector (cdr l)
(lambda (dl dp ds)
(col (cons al dl)
(* ap dp)
(+ as ds)))))))))
;; The collector function
(define (collector newl product sum)
(cons sum
(cons product newl)))
Thank you in advance!!
Try something simpler to see how this works. For example, here's a version of a list-sum
function that receives a continuation argument (which is often called k
):
(define (list-sum l k)
(if (null? l)
???
(list-sum (cdr l) ???)))
The basic pattern is there, and the missing parts are where the interesting things happen. The continuation argument is a function that expects to receive the result -- so if the list is null, it's clear that we should send it 0
, since that is the sum:
(define (list-sum l k)
(if (null? l)
(k 0)
(list-sum (cdr l) ???)))
Now, when the list is not null, we call the function recursively with the list's tail (in other words, this is an iteration), but the question is what should the continuation be. Doing this:
(define (list-sum l k)
(if (null? l)
(k 0)
(list-sum (cdr l) k)))
is clearly wrong -- it means that k
will eventually receive the the sum of (cdr l)
instead of all of l
. Instead, use a new function there, which will sum up the first element of l
too along with the value that it receives:
(define (list-sum l k)
(if (null? l)
(k 0)
(list-sum (cdr l) (lambda (sum) (+ (car l) sum)))))
This is getting closer, but still wrong. But it's a good point to think about how things are working -- we're calling list-sum
with a continuation that will itself receive the overall sum, and add the first item we see now to it. The missing part is evident in the fact that we're ignoring k
. What we need is to compose k
with this function -- so we do the same sum operation, then send the result to k
:
(define (list-sum l k)
(if (null? l)
(k 0)
(list-sum (cdr l) (compose k (lambda (s) (+ s (car l)))))))
which is finally working. (BTW, remember that each of these lambda
functions has its own "copy" of l
.) You can try this with:
(list-sum '(1 2 3 4) (lambda (x) x))
And finally note that this is the same as:
(define (list-sum l k)
(if (null? l)
(k 0)
(list-sum (cdr l) (lambda (s) (k (+ s (car l)))))))
if you make the composition explicit.
(You can also use this code in the intermediate+lambda student language, and click the stepper button to see how the evaluation proceeds -- this will take a while to go over, but you'll see how the continuation functions get nested, each with it's own view of the list.)
Here's one way to help you "get a more concrete idea". Imagine if the collector were defined thus:
(define (collector l p s)
(display l)
(newline)
(display p)
(newline)
(display s)
(newline))
You can see in the base case, if you pass in an empty list, it will call your function with arguments '()
, 1, and 0. Now, work with a one-element list, and see what it'll call your function with. Keep working up with longer and longer lists, until you figure out what's going on.
Good luck!
I'm considering learning a Lisp dialect (probably Scheme, since I am constantly hearing how good of a learning language it is) in order to improve my general programming skill.
Apart from the fact that learning any new language helps you to be a better programmer in general, how can learning Lisp make me a better C# programmer?
Why Functional Programming Matters by John Hughes http://www.cs.chalmers.se/~rjmh/Papers/whyfp.html
Beating the Averages by Paul Graham
http://www.paulgraham.com/avg.html
I think the best you can gain from studying a functional language is starting to think in a more declarative, less imperative way. That will lead to writing more readable, maintainable and composable code.
Another thing you learn when you go functional is the importance of pure functions, i.e functions without side-effects.
And because C# has been getting more and more functional and declarative features like closures (aka lambdas) and LINQ, you can understand programming with those constructs better. I had no trouble understanding deferred execution, the most common LINQ pitfall, because I already grokked Haskell, a lazy-evaluated functional language.
Joel wrote an essay some years ago about programmers knowing anything but Java , and why it would be a good idea to learn something like Scheme. I think those arguments go for C# as well. Another good reason is that there is a really good book about programming, 'Structure and interpreation of computer programs' by Abelson and Sussman, which uses Scheme and can give you a lot of new insights into different programming concepts.
You should learn Lisp so that you can understand the power of metaprogramming. If you haven't already done so, you should learn to use Emacs and try writing some Emacs Lisp. After that, try moving onto programming Common Lisp using SLIME.
For one thing, you can learn recursion inside and out.
One good reason for learning Scheme is that it is often used as a pedagogical language. As a result, there are many good (academic) books and papers available written with Scheme as the target language.
Google:
Just learn it and come back amazed and tell us about it.
I develop in Lisp and in Scheme, but I was reading about Clojure and then I want to know, in which cases is better to use it than using Lisp or Scheme? Thanks
This question is impossible to answer. You should use Clojure nearly 100% of the time over CL and Scheme, is what I would say. But that doesn't mean you should listen to me. Others can make a good argument that the opposite is the case.
For me, the syntax and function names in Clojure aesthetically pleasing. Certain Java libraries are invaluable for what I do for data munging and web programming and GUI stuff. Functional programming is challenging and enjoyable. Clojure's flaws are unimportant and outweighed by its benefits in my eyes. Certain intolerable flaws in other Lisps are "fixed" in Clojure, because it's new and it can ignore backwards compatibility. It has a novel and arguably powerful approach to concurrency. The Clojure community is vibrant and welcoming and awesome. All of this says as much about me and what I value as it does about Clojure or other Lisps.
There are libraries for CL and Scheme that don't exist in Clojure or Java. There are people who dislike how Clojure uses too much syntax like []
and {}
and want to use parens everywhere. If you want CLOS-style OOP or lots of mutable data structures, another Lisp is arguably better. The JVM is heavyweight, maybe too heavyweight and too much baggage for some people. A lot of Java leaks into Clojure (by design) and this offends some people's sensibilities. The STM and immutable data structures have overheads that make certain things (e.g. number crunching) slower or less elegant. Clojure is new and still rough in certain areas, still rapidly changing and evolving in others. Clojure has yet to pass the test of time, whereas other Lisps already have. Clojure is not a "standard" and some people find a language defined by an implementation to be unappealing. And so on. None of these things matter to me, but they may to you.
This is almost entirely subjective. Which language you should use depends on what you already know, what you are willing to learn, what libraries you want to use, what editors and tools you're comfortable with, what language flaws you're willing to live with and work around and what flaws you can't tolerate, and what helps you get your work done faster, more cheaply, more enjoyably, or achieve whatever your goals are.
Basically, whatever makes you feel warm and fuzzy. Learn them all and then make an informed choice based on your own tastes, and use whichever one you like the best. They're all good.
"Clojure runs on the JVM" means you get the whole cornucopia of Java libraries available. You can make pretty GUIs in Swing, use Apache's Web client or server code, connect a ready-built Sudoku solver... whatever you like.
Another big plus of Clojure is its very polished concurrency support, with about 3 different flavors. If you have a compute-intensive, parallelizable task, Clojure can make it easy. Well, easier.
Update: Another argument. Clojure is pretty strongly functional, so it's a plus if you want to force yourself to think and write functionally.
When? As much as possible. Why? Immutable Data Structures - they really are that good. There are plenty of other reasons too.
A subset of Clojure can also compile to javascript
Clojure should be used when
Scheme would be better when:
[1] yes this is a bad bad bad reason. such is the world we live in...
ABCL (Armed Bear Common Lisp) and a several of Scheme implementations (KAWA, SISC, ...) are also running on the JVM.
Generally Common Lisp is available in different 'flavors' - ABCL is one of them. Other compile to C, to native code, have extensive development environments or specialized extensions like logic languages or databases.
Clojure OTOH is a new Lisp dialect with emphasis on lazy functional programming and concurrent programming. Its author (Rich Hickey) is a very experienced software developer (he has also written Java and .net interfaces for Common Lisp) and did an excellent job with Clojure. Even though there is some hype around the language, it is worth checking out - it is definitely one of the better Lisp dialects developed in recent years (compared to say Newlisp or Arc).
There are lot's of reasons, some mentioned above. My take is:
If I had to find one thing to complain about, it would be IDE support. Maybe it's a question of learning new habits, but it is still easier for me to handle the mechanics of Java development than Clojure. I have tried, and use, Clojure Box, enclojure on NetBeas, La Clojure on Intellij IDEA, and Counterclockwise on Eclipse. They all work fine if you are working primarily from the REPL, but for compilation and execution of class files, they all still feel a bit clumsy.
Clojure runs on the JVM (and on the CLR), so there is that.
Clojure's design is concerned with accommodating several styles of concurrent programming safely, deliberately making it difficult to mistakenly write the dangerous, rickety, and often broken concurrency-tolerant code in other languages. If your problem domain involves concurrent programming, Clojure's array of integrated tools for managing concurrency may be a better fit than the implementation-specific or lowest-common-denominator libraries available in other Lisps and Schemes.
One of the greatest things about Clojure is the plethora of libraries you can use with it. You have the power of Java with the expressiveness of Lisp, and that is a badass combination. Clojure is more suited for real world development, because it was made for real world development. With Clojure, you have awesome libraries, awesome modern features, and an amazing community of helpful, like-minded people.
I would have to say that Clojure is a better language, all the way around. That is a highly argumentative statement to make, so I will point out here that this is just my honest opinion.
Clojure rocks.
I'm always trying to learn new languages, so I'm interested in learning Clojure. But, aren't SBCL and some other Common Lisp implementations much, much faster than Clojure? Wouldn't you need considerably more than 4 processors (and a reasonably parallelizable task) to make up for the performance difference between a Clojure app and even a single-threaded SBCL version of the same app?
As a general rule of thumb, I tend to favor Clojure over other languages in cases where either of these fit the bill: (1). The domain model tends to look very recursive and/or graph-like. (2). There's an opportunity to leverage a multi-core JVM environment (e.g., Elastic Beanstalk) (3). There's a fuzzy barrier between data and code (think RPN calculator where nodes can be operators or numbers)
These might sound a bit contrived, but a lot of my work involves dealing with graphs and trees of information, whether it's looking at social networks, some kind of constrained-based optimization, or semantic relationship building. I find that my other favorite language, Ruby, cannot give me the mix of expressiveness and raw computing power compared to Clojure, particularly when it comes to quantitative, recursive, concurrent-type problem solving.
Hey, I've been looking at the possibility of adding a scripting language into my framework and I heard about Lisp and thought I would give it a go. Is there a VM for Lisp like Lua and Python or am I in the wrong mindset. I found CLISP here, http://clisp.cons.org/, but am not sure if this is what I am looking for.
Can anyone point me in the right direction?
CLISP is just one implementation of Common Lisp. It's a very good implementation, and it does have some support for being embedded in other (C-based) programs, but that's not its focus and it's GPLed, which may or may not be a deal-breaker for you.
You might be interested in checking out ECL. This implementation is specifically designed to be embedded (indeed, the "E" stands for "Embeddable"!), and has numerous features that might be useful to you, including the ability to compile Common Lisp programs to C (as well as providing byte-code compilation and an interpreter).
Unless you need the whole of Lisp, you may want to settle rather on a Scheme implementation like Guile which is meant to be incorporated into another program.
Chicken Scheme is another option for embedding. See here for details of the embeddable api.
Try Embeddable Common Lisp (ECL).
It's targeted at embedding and you get only the parts of Common Lisp linked that your scripting language needs.
There are a couple of easy options.
GUILE is the GNU extension language. It is an embeddable Scheme (dialect of LISP). GPL (naturally).
TinyScheme is a very small, very simple interpreter-based implementation of Scheme. It was successfully used by a malware company to do all kinds of nasty things. It is available in source form, I don't recall under what license(s).
A Lisp is a good choice for an embedded language. Many people believe Lisp is hard but the syntax is relatively light, especially for non-programmers. There is essentially the prefix notation and that's it. Precedence rules are always unambiguous. Function names and variable names can be the same. You're pretty much free to use any characters you like for fun and var names.
With Lisp you can bend the syntax to your liking; the users do not have to learn common lisp. It is easy to extend and to provide, simpler facilities, such as expressing business rules or extracting data from files.
I guess my point is that the power and complexity of say Common Lisp, enables the provision of simple, domain specific constructs to the end user. Many other embedded languages will mean those users learning the intricacies of that language.
Googling a little bit: Common Lisp as an Extension language
But keep in mind that Common Lisp wasn't designed from the ground up to be an extension language, unlike Lua or Guile.
A general advice: try to use an extension language that really makes the work of writing them easier, and remember that mastering Lisp so you can be really productive with it can take quite long (and there are not many people around that can stand so many parens xD).
Since it is not a Lisp, Fuzuli has a syntax similar to Lisp. It is easy to integrate it to C++ applications. The official site is http://www.fuzuliproject.org
Another one is newLISP at http://www.newlisp.org/ and it is also not a Lisp but very close to Lisp.
Lisp is a family of languages.
Common Lisp is an ANSI standard that is huge. Think C++ huge. Don't use it as a script language.
Unless you are targeting fairly hardcore programmers, Lisp as a scripting language is going to be...er....not well taking. Probably. Lua is likely a better bet as a script language.
That said, a Lisp is fine(technically) for implementing a scripting language.
On the xkcd site today, the following appeared as a joke in a <script language="scheme"> tag
so what does the following code do / represent?
(define
(eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp)
(lookup-variable-value exp env))
((quoted? exp)
(text-of-quotation exp))
((assignment? exp)
(eval-assignment exp env))
((definition? exp)
(eval-definition exp env))
((if? exp)
(eval-if exp env))
((lambda? exp)
(make-procedure
(lambda-parameters exp)
(lambda-body exp) env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp)
(eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else (error "Common Lisp or Netscape Navigator 4.0+ Required" exp))))
It's essentially a simple interpreter, if you assume that all the requisite methods are filled in.
I have a passing knowledge of other Lisps (particularly Scheme) from way back when. My knowledge is pretty rusty (and was pretty basic to begin with). Recently I've been reading about Clojure. I see that it has both "symbols" and "keywords". Symbols I'm familiar with, but not keywords.
Do other Lisps have keywords? How are keywords different from symbols other than having different notation (ie: colons)?
Here's the Clojure documentation for Keywords and Symbols.
Keywords are symbolic identifiers that evaluate to themselves. They provide very fast equality tests...
Symbols are identifiers that are normally used to refer to something else. They can be used in program forms to refer to function parameters, let bindings, class names and global vars...
Keywords are generally used as lightweight "constant strings", e.g. for the keys of a hash-map or the dispatch values of a multimethod. Symbols are generally used to name variable and functions and it's less common to manipulate them as objects directly except in macros and such. But there's nothing stopping you from using a symbol everywhere you use a keyword (if you don't mind quoting them all the time).
The easiest way to see the difference is to read Keyword.java
and Symbol.java
in the Clojure source. There are a few obvious implementation differences. For example a Symbol in Clojure can have metadata and a Keyword can't.
In addition to single-colon syntax, you can use a double-colon to make a namespace-qualified keyword.
user> :foo
:foo
user> ::foo
:user/foo
Common Lisp has keywords, as do Ruby and other languages. They are slightly different in those languages of course. Some differences between Common Lisp keywords and Clojure keywords:
Keywords in Clojure are not Symbols.
user> (symbol? :foo)
false
Keywords don't belong to any namespace unless you specifically qualify them:
user> (namespace :foo)
nil
user> (namespace ::foo)
"user"
(Thanks Rainer Joswig for giving me ideas of things to look at.)
Common Lisp has keyword symbols.
Keywords are symbols, too.
(symbolp ':foo) -> T
What makes keywords special:
Otherwise keywords are ordinary symbols. So keywords can name functions or have property lists.
Remember: in Common Lisp symbols belong to a package. This can be written as:
For keyword symbols that means that :foo, keyword:foo and keyword::foo are all the same symbol. Thus the latter two notations are usually not used.
So :foo is just parsed to be in the package KEYWORD, assuming that giving no package name before the symbol name means by default the KEYWORD package.
:keywords are also treated specially by many of the collections, allowing for some really convenient syntax.
(:user-id (get-users-map)
is the same as
((get-users-map) :user-id)
this makes things just a little more flexable
Keywords are symbols that evaluate to themselves, so you don't have to remember to quote them.
I started learning Scheme for fun, and was wondering if anyone uses it for a living as a prime programming language... or even as an additional tool to the programming arsenal? If so, what do you use it for? What kind of problems do you typically solve with it?
There are plenty of people who write Scheme for a living. They're university professors, though, mostly in the field of programming languages--there are several here at Indiana University, like Kent Dybvig and Dan Friedman. They prototype new ideas in programming language semantics (and Dybvig also sells a Scheme compiler).
This is not a field that has a lot of paying customers, so technically the professors are paid because they have tenure at a university. But they got tenure by publishing new ideas in programming languages.
There are also some professors who advocate the use of Scheme as a teaching language, like Matthias Felleisen and the others behind PLT Scheme. They also write Scheme for a living.
Scheme is great for trying out new language semantics because it has very simple, powerful primitives and the uniform syntax lets you concentrate only on the semantics. If you are designing a new programming language, prototyping it in Scheme might be a useful first step. Scheme doesn't get in the way of new ideas because it includes so few of its own.
ITA Software (makers/operators of an airfare search engine that powers Hotwired and the like) writes their product in Lisp.
Also, AutoCAD can be scripted in Lisp.
The original version of the Yahoo! store was written by Paul Graham in Common Lisp. He sold it for a lot of money. (Update: only a piece of the store, thanks for the detailed comment by Laurence Gonsalves.)
It is, however, one of the few or even the only well-known success case of Lisp in the real world, and for some reason Yahoo rewrote it in C++.
There are a number of free programs that use Lisp, but few if any people get paid to work on them, and these are not specifically Scheme. gEDA is the gnu electronic design automation package and is one of the (again, few) success cases for Guile, the Gnu lisp extension language.
ELisp, or Emacs lisp is perhaps the most commonly deployed lisp system. I don't know how many emacs users actually use the extension language.
Yes some people use Scheme for a living. For example there are occasional openings for Scheme programmers here in Montreal (http://theschemeway.blogspot.com/2009/03/scheme-job-openings-at-gamerizon.html). Search the site for "job" for more Scheme jobs.
In my experience people programming in Scheme make up less than .1% of the professional programming community, at least here in Montreal. I have seen Scheme used for doing embedded systems programming, high-precision numerical computing, web programming, game scripting, and more.
Some GNOME apps are scriptable with the Guile dialect of Scheme, most notably GIMP.
Closely related, GNU Emacs is scripted using LISP.
If Warren's answer hasn't clued you in, the answer is no. Practically no one is making a living off of Scheme. (Paul Graham's Yahoo Store is, to my mind, the exception that proves the rule -- you can code a great product in Lisp, but there's a reason why Graham is practically the only person on earth who has become wealthy doing so. Think Harvard Ph.D. and incredibly fortunate timing.)
However, people out there in the real world are making a living doing functional programming. There are companies like Galois, Jane Street, etc., who specialize in functional languages. And once you've learned one functional language (Scheme, OCaml, Haskell, etc.), other functional languages are much easier to learn.
I think the second part of your question -- what questions is Scheme well-suited to solving -- is easily answerable. Scheme is Turing-complete, which means it can solve anything that any other programming language can. It has some nifty features that haven't even made it into Common Lisp yet (tail recursion, notably), but it's also lacking many features that CL has acquired over the years.
Seeing how Scheme is a variant of Lisp, ANY kind of problems.
As an example of vesratility, the e-commerce engine that later became Yahoo! Stores was (before it was bought by Yahoo) largely, though not exclusively, written in Lisp.
I know a guy in the Boston area who codes in Scheme for a living. I think he works for some offshoot of MIT. Since Scheme is the 1st language at MIT, a lot of the startups around here use Scheme at least in part...
So, the answer to that is "Some but not that many" (Sadly)
Check this out: A Video Game Written in Gambit C. Here is the Post to the Gambit mailing list stating as such..
I've done a smattering of scheme programming in my job, mostly for automating tasks. It was especially helpful when walking over a massive JSP codebase to pull out any CData, and prepare it for sending to our translations vendor. (Yay SXML)
Having Scheme on your resume isn't a bad thing.
Coot (some sort of CAD program for proteins) is the most highly cited [1] open source software and uses scheme as the extension language. The developers are academics and are paid to develop it.
[1]: in the scientific literature
Check out: http://webcast.berkeley.edu/course_details_new.php?seriesid=2009-D-26266&semesterid=2009-D This is a great course on scheme programming, which shows that scheme is still being taught at the university level, so there must be some application in it.
If I want to learn Clojure, should I start by learning Scheme or Common Lisp?
Or is Clojure different enough from both of these, that I should just start learning Clojure by itself?
It would be to your benefit to learn all three, if only so you can pick which one is best for your needs. All three have their own strengths and weaknesses.
Clojure is vaguely like Scheme in that it's a mostly-functional language and is a Lisp1. Clojure also borrows things from Common Lisp, like multimethods and macros, and people are always porting cool Common Lisp things to Clojure as libraries. The creator of Clojure was himself a Common Lisp hacker before writing Clojure. Clojure borrows a lot of terminology and conventions from Scheme and CL both (but also has its own flavors in many areas).
There is not a lot of literature for Clojure right now, it being such a new language (there is only one Clojure book so far). But there are loads of good Scheme-oriented books, like SICP and The Little Schemer / The Seasoned Schemer. There are also good CL books, like PCL, and many others.
Lisps also have a lot of history and it is to your benefit to understand the history, to see where and why Clojure deviates from it if nothing else.
I'd recommend starting with Scheme because it's the simplest language of the three and therefore easiest to learn. Then dabble in CL and Clojure until you have a handle on things, then go full-steam in whichever of the two you gravitate toward.
For your purposes I think you are safe to just start learning Clojure. The differences between Lisp and Scheme (and Clojure itself for that matter) shouldn't be a concern especially if you are just starting to learn.
My first Lisp learning experience was with Scheme, I've never touched Common Lisp (felt it was too complex), and am now starting on Clojure.
I used Dorai Sitaram's "Teach Yourself Scheme in Fixnum Days" to learn Scheme and got fairly far though I never really found myself wanting to use Scheme in real projects.
Clojure, because it purportedly gives nice, clean access to the huge universe of J2SE/J2EE libraries, on the other hand, encourages me to relearn this Lisp dialect because it may finally be of practical use.
As for which one to start with, I would say Scheme is simpler and so might be more appropriate to start with. On the other hand, if you have good Java and Python knowledge, you might not mind diving straight into Clojure because, unlike Scheme, it contains elements of these other two languages (e.g. data structures reminiscent of Python and JVM/Java API centric tutorials) and the familiar terrain might help.
Since I did come from all three (Java, Python, Scheme), I find myself in a good position to appreciate just what Clojure brings to the table that is different from Scheme. I'm no experienced Schemer, but I'd say that if you immediately start with Clojure, you will still get the general Lisp experience, so you definitely won't be missing that by forgoing Scheme.
It depends on whether you want to focus on learning or playing. If you really want to study Lisp, Scheme is a good place to start. If you'd rather play as you're learning Clojure is a better fit.
Eventually I think Clojure might be a better learning language. It's support for concurrency is really eye-opening. Few languages make it so simple for a beginner to write concurrent programs.
I'd like to implement a Lisp interpreter in a Lisp dialect mainly as a learning exercise. The one thing I'm thrown off by is just how many choices there are in this area. Primarily, I'm a bit more interested in learning about some of the Lisps that have been around a while (like Scheme or Common Lisp). I don't want to use Clojure to do this for the sheer fact that I've already used it. :-)
So is one of the flavors any better than the others at parsing? And do you think it's a good idea to say implement Scheme in Common Lisp (or vice versa)? Or will there be enough differences between the two to throw me off?
And if it makes any difference, I'd like something that's cross-platform. I have a Windows PC, a Mac, and a Linux box, and I could end up writing this on any of them.
There are some books about that:
All of the above books are highly recommended, though Anatomy of Lisp is oldish, hard to get and hard to read.
Both Scheme and Common Lisp are fine for your task.
Implementing Common Lisp is a larger task, since the language is larger. Usually one implements Common Lisp better in Common Lisp, since there are Common Lisp libraries that can be used for new Common Lisp implementations. ;-)
PLT Scheme is an excellent platform for experimenting with programming languages, especially Lispy languages. PLT has an extensible parser (usually called a reader in Scheme) that provides reader macros to manipulate the built in syntax; or you can completely replace the reader with your own. If you'd rather use traditional lex/yacc style parsers and lexers, PLT comes with a parser-tools module that provides those, too. As a bonus, it has comprehensive documentation and a repository for third-party packages (two things that are missing from a lot of Schemes).
The reference implementation of Arc (arclanguage.org) is a fairly simple and readable example of building a language that compiles to Scheme. It uses PLT's reader mostly, with a couple of reader macros to change the bits of Scheme syntax that differ from Arc's. There's also a JavaScript implementation available from PLT's package repository (planet.plt-scheme.org) if you want to see how to implement a non-Lisp language.
I usually write web apps in PHP, Ruby or Perl. I am starting the study of Scheme and I want to try some web project with this language. But I can't find what is the best environment for this.
I am looking for the following features:
So, thanks in advance to all replies.
Racket has everything that you need. See the Racket web server tutorial and then the documentation. The web server has been around for a while, and it has a lot of features. Probably the only thing that is not included is a mysql interface, but that exists as a package on PLaneT (Racket package distribution tool).
You may want to have a look at Clojure:
Clojure is a dynamic programming language that targets the Java Virtual Machine. [...] Clojure provides easy access to the Java frameworks, with optional type hints and type inference, to ensure that calls to Java can avoid reflection.
Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and a powerful macro system.
Interop with Java is straightforward in Clojure, so you can re-use any existing Java libraries as you need. I'm sure there are plenty that are useful for web development.
clojure-contrib has an SQL API, and there is ClojureQL as well, which should cover your DB access needs.
There is a web framework for Clojure called Compojure under development. There may be others, too.
Clojure's source is available on github under the EPL. Getting it running on Linux is easy; I just clone the git repos and run ant
.
Try Weblocks, a Common Lisp web framework:
This may be what you are looking for.
If you are interested in Common Lisp to be exact and do not want to go the weblocks route I would recommend the following setup:
Note all the above are under GPL or similar license (one that works more for lisp programs)
Gambit Scheme has its own solution to web apps as well. It uses the Spork framework, based o the Black Hole module system (both by Per Eckerdal).
Andrew Whaley has an initial tutorial on how to get Gambit, Black Hole and Spork running a web app under Apache using mod_proxy. You might want to take a look at that.
On a (possibly) related note, Gambit will also compile your stuff to C and then to an executable, if you feel so inclined.
Paul Graham (and friends) made a lisp dialect specifically for writing basic web applications. It's called Arc, and you can get it at arclanguage.org.
It's probably not suited for really big complex websites and I'm not sure what state it's database support is at but Paul Graham knows how to write web applications in lisp, so Arc will make the HTTP/HTML part easy for you while you spend most of your brain cycles learning the lisp way.
You can do web development with guile scheme. Its standard library includes the (sxml simple) module that is very useful for html generation, manipulation, and parsing. The guile-www library adds support for http, cgi, etc. The guile-dbi library provides access to MySQL and other databases. With these building blocks, you can implement everything from simple cgi scripts to web applications with their own HTTP server.
I use my own, customized version of Scheme, derived from MzScheme. It has a new, simple web-application framework, a built-in web-server (not the one that comes with MzScheme) and ODBC libraries. (http://spark-scheme.wikispot.org/Web%5Fapplications). The documentation may not be exhaustive, as this is more of a personal tool. But there are lots of sample code in the code repository.
Weblocks is nice tool for building web apps in Common Lisp, but a bit too heavy-weight for me.
We use the following stack:
OpenMCL (open source Lisp, very nice)
Portable Allegroserve (web server, HTML generator)
Our own Rails-like tools for doing Ajaxy stuff (update: this has now been open sourced as WuWei)
Clojure would be perfect for this. With some very short, clean code, you can implement some very complex applications, such as blogs or forums.
I use mostly R and C for statistics-related tasks. Recently I have been dealing with large datasets, typically 1e7-1e8 observations, and 100 features. They seem too big for R too handle, and the package I typically use are also more prone to crashing. I could develop tools directly in C or C++, but this would slow down the development cycle. I am searching on the web for alternatives to R for large-scale analysis, or for R extensions in this direction. I would like to poll the Stack Overflow community for specific suggestions on what to use. Ideally, a good candidate should have stable and multiplatform implementations, a robust user community (or at least a committed and growing small user base), and of course be faster than R (by passing references to functions, compiling, facilitate parallelization of embarassingly parallel jobs).
I have been looking at functional languages. Lush (by Bottou and LeCoun) and Clojure/Incanter are specifically geared for numerical computation, but seem to have very few users. Haskell, Common Lisp, Scheme have a solid user base, but I am not sure that people use them for numerical work.
Apologies if this question seems too generic. I am not asking for philosophical statements regarding the merit of this or that language. I Just would like to know what you use for custom analysis of very large data sets.
I am content to stick with R. I also have large data sets on similar dimensions, though you could call them 'sparse' (in a slight abuse of the term). I find filtering / condensing the data first, possibly using some fairly quickly written C++ subroutines, and the modeling and analyzing in R is still the best bet. R is mature, well tested, extensible and has 1900+ packages on CRAN --- not sure how much of this I'd find in other languages.
Notes on how to do 'more' with R are in my intro to high-performance computing with R tutorial notes if you permit the blatant self-reference. Maybe you will find something useful in there -- it covers profiling, C/C++ extension building and parallel computing with R.
That said, the best bet may well be with the old Unix philosophy of combining several well-designed tools in a larger chain. Maybe some of the newer / functional languages can help you to in a processing step before or after you do other work with R or C.
I share your desire for fast prototyping AND fast runtimes, and am similarly dissatisfied with kludging together {R or Python} + {Fortran or C or C++}. I don't really want a full-out Scheme-style (or worse, Haskell-style) functional language though. (Been there, done that; they sound pretty, but aren't practical.) I just want an imperative language that doesn't suck, with a few functional and maybe OOP features.
That said, I'm now looking into Scala, with the Scalala MATLAB-like library. It does linear algebra and I think, LAPACK bindings (through some Java/JNI library), and also some plotting. Since Scala has an interactive interpreter (albeit a bit immature), you can use it in an R/MATLAB interactive style, which is nice.
This is fairly new, so way less library support than R.
Scala is like Java but less sucky and more functional-y and type-inference-y. Supports lightly typed, fast prototyping better than either C++ or Java. In terms of language features, I think it's similar to OCaml or F#. I find it easier to grok, personally, though it's a somewhat complex language.
I've found Scala to be faster than Python (supposedly it's as fast as Java) which I avoid in the same situations you stated -- sometimes you need to write your own inner loops and it would be nice to not have to bounce in and out of C. (FWIW, Python's ctypes is a lot nicer than R's C API, but you do still get the basic annoyances of C/C++ world like segfaults.) I know some folks who write L-BFGS and other performance-crucial sort of numeric code directly in Scala and they seem happy. But I have not tried this myself yet.
The Scalala author tells me he does all his algorithms and analysis in Scala now. Of course, he'd be the first one to do that :) but since you mentioned complete integration in a single language as a goal, that is one success story.
For the longer term hardware innovation problems you mentioned, like GPU usage, the JVM (Scala, Clojure, Java) seems like a bad bet because it has such insufficient C/C++ integration. I wonder if any functional language is very good here. I suspect hardware innovations will always require close-to-the-metal C++ coding, at least for several years after they come out.
JVM is good at multiple cores though. Scala has some nice parallelism libraries, though I suspect any functional JVM language should have good ones.
Positive sides about the JVM: good JIT compilation, garbage collection and runtime type safety (no segmentation faults), yet only slightly slower than C++. (Supposedly at least.) Very widespread in corporate programming, so it'll be around for years to come on open source platforms.
Negative sides:
insufficient C/C++ integration (JNI, though it gets the job done)
clunky integration into Unix-land. Just using Java's I/O library is such a pain. (ScalaNLP's Pipes.scala make this substantially easier. i need to bother those guys again about putting it on github so i could link to that file, it's great). And every time you want a commandline script you have to write a shell loop that adds dozens of jars to the CLASSPATH. Argh. This is NOT acceptable.
insufficient package management compared to Python's or Ruby's. I always thought RubyGems and eggs/easy_install were clunky, but watching Maven 2.x crash and burn is a disheartening experience. This is a general problem with the Java ecosystem. On the other hand people don't seem to have as much of a problem as me.
any JVM language will always be slower than well-tuned C++ or Fortran
On the other languages people are talking about...
F#: If I had Windows for free, I'd try C#/F# because supposedly they have very good C++ integration. But I don't, and Mono doesn't look widely enough used to bet on as a platform. Despite the annoyance the JVM is, it's definitely here to stay.
Clojure: I don't understand what the big deal is. It's cool because it has irritating parentheses?
You are not the only one thinking about this.
Back To The Future: Lisp as a Base for a Statistical Computing System Presentation, Paper, Code.
I would recommend one of the 64bit Common Lisp implementations: Overview
I've had good experiences using Python and its package Numpy to work with large data sets. It's not a strictly functional language though. Your question doesn't make it clear why you're searching for a functional language.
If you do want a functional language, I recommend Haskell. Its performance is excellent and it has a phenomenal user community.
Incanter is excellent. It's pretty new, but it's very capable as most of its features are inspired by R, but with a more performant runtime.
F# maybe? Good thing about F# you can use rich OCaml codebase, and at the same time have a full access to .NET Framework with all the neat IDE's, tools, 3rd party libraries, and fancy interactive F# with on the fly code compilation/injection.
Scala (JRE based) also seem to be very powerful multiparadigm language. Additionaly it provides some very nice metaprogramming features, so you can extend the language how you like it.
Nemerle (CLR based) - similar as Scala but even more powerful metaprogramming.
The great advantage of these three languages that they are based on highly optimized and polished virtual machines, so the performance will be nearly as good as native C/C++ if that concerns you.
Have you looked at http://www.revolution-computing.com/ and their tools for large/parallel data processing? That's probably where I'd start - first with their free stuff and then if you have the cash, their pay stuff.
Personally I think it's a losing battle to try to find a new tool just to work with large data. I think the existing good tools have to be outfitted with good support for addressing data structures too big to fit comfortably into RAM. I don't see another way forward for the community. I'm also pretty confident R will have good solutions for large data before some of these other, newer packages have deep benches of community-created modules.
I am not sure if you are going to like this suggestion or not, but have you ever heard of a software package called Root? It is developed by CERN (the European Nuclear Physics research organization) and is used to analyse data from the Large Hadron Collider. It is based on a C/C++ interpreter called CINT. Root is designed to handle the types of workloads you are describing and supports OOP. I use it in my research which involves, in a given run, over a billion events each with between 1 and 6 data points to be analysed. Root can be a pain to learn how to use but is very versatile once you do. Even though it is designed for high energy nuclear physics, it can be used for other things like statistical analysis. Root is run on parallel facilities so I know the capability is there (Personally, I am not sure how easy it is to get this feature working on a cluster though as I have never tried myself).
You can find Root at CERN's webpage:
It is available for direct download or checkout via Subversion. It is designed to run on Linux, but will run on Mac OS X or Windows if you use Cygwin.
Without knowing what exactly you want to accomplish: we use SAS (not functional at all) for jobs of this size on a regular basis on a good sized PC (3 ghz 4GB ram). Its not instantaneous but it does get the job done, and you don't have to code any differently.
SAS is kind of like an abusive relationship, most of the time its ok (using most of the procs), sometimes its really good (data step and options, decent sized data), and other times its so horrible you have to change your zip code (inconsistent syntax, macro debugging ye gods, nearly anything macro related).
For tests, we generally sample down to 1e6 size sets and go from there. SAS is great at that size on a personal PC, procs running particularly quickly at that size.
Pros:
Cons
What packages are you using that are prone to crashing? Since you are already familiar with R, you should explore the High Performance Computing task view on CRAN.
Here is one specific suggestion: re-write your code such that 'lapply' functions do all the heavy lifting. Then replace the 'lapply' function with the 'mclapply' function from the multicore package and run your analysis on a quadruple-extra large instance on amazon EC2. 68 GB of ram and 8 processors can tear through some pretty big datasets, and this approach will require exactly one change to your code (lapply becomes mclapply). I have tried this myself with spectacular results.
The bioconductor ami comes pre-loaded with R and multicore, so you can just fire it up, ssh in, and you're good to go.
And if you feel like going completely crazy, install the package segue, and replace mclapply with emrlapply. You can take a look at this tutorial for more information, but this technique works best if have processor-limited, rather than memory limited calculations. It is highly experimental, and probably not well suited to your task, but calling up a 25-computer cluster with 2 lines of R code is pure joy.
Seconding Clojure / JVM / Incanter.
I haven't tested it on very large dataset though, but the combination of lazy processing of Clojure, and Incanters' use of the Java parallel Colt libraries might make things work for you.
What I'm doing right now with it is mapcatting through hashtables with values that contain vectors, and doing some statistics on that. My data size is less than a million entries though, so I can't tell you if it will hold up.
I've had surprisingly good results with Ocaml. The syntax is ugly to my taste, but as with other functional languages it's easy to to translate abstractions into code, and lends itself to problems where you're working at multiple levels of abstraction; e.g., linear algebra routines -> overarching mathematical algorithms -> data management -> interface with external world. It just works, and it's relatively fast and memory efficient.
While I haven't tried it out, I'm intrigued by Single Assignment C. SAC looks to be still in the experimental stage, but embodies a lot of thoughtful work and experimentation on linear algebra in a functional context. Implicit parallelization is a major focus.
I got led here via my blog somehow. I'm actually using Lush for that at present, but I'm swapping to disk a lot: it barfs at around the same time R does, and for the same reasons. While I haven't tried this in OCaml or Common Lisp, the same thing is likely to happen unless you have a 64 bit version and a big computer. Numerics facilities in all the other Lisps and ML's I've looked at have been very much beneath those in Lush. Sad, really. There is a lot of potential there.
If you want to hold more data in memory on a big machine, you can compile a 64 bit version of R, or buy a 64 bit version of MATLAB. I'm guessing that MATLAB is going to work better, but you can try the 64 bit R for free first to see if it works. I have also seen a lot of 64 bit SAS used for this type of thing.
I just mention (since it looks to have been overlooked) that there is an open source version of the APL language called J. Here are the relevant links:
I've only toyed with it a little, but it shows some promise.
Lush (by Bottou and LeCoun) and Clojure/Incanter are specifically geared for numerical computation, but seem to have very few users. Haskell, Common Lisp, Scheme have a solid user base, but I am not sure that people use them for numerical work.
Look at the job market trend in the US according to Indeed:
Look at the job market trend in the UK according to IT Jobs Watch for Clojure:
and Haskell:
As you can see, the Clojure community is just as strong as Haskell's if not stronger because most of the search results for Haskell are hits for homonyms like people called Haskell and jobs in Haskell City. Moreover, the Haskell community is composed almost entirely of Haskell researchers whereas the Clojure community is composed almost entirely of real users because it is not a research language but, rather, was designed and built by an industrialist for industry.
I am searching on the web for alternatives to R for large-scale analysis, or for R extensions in this direction. I would like to poll the Stack Overflow community for specific suggestions on what to use. Ideally, a good candidate should have stable and multiplatform implementations, a robust user community (or at least a committed and growing small user base), and of course be faster than R (by passing references to functions, compiling, facilitate parallelization of embarassingly parallel jobs).
You cannot really go wrong with any of Standard ML, OCaml, Haskell, Clojure, Scala, Common Lisp or Scheme. My personal favorite is F# but it is not multiplatform: it only works reliably on .NET under Windows.
I have been working on a project called HLVM that will provide a foundation for high-performance high-level F#-like programming languages in the future but it is not quite ready yet.
I'm also looking at doing some large-scale processing in R. I'm slowly ramping up to trying out the amazon web services/ec2/hadoop route. I think it depends somewhat on what you need to do. If you are doing permutations and sorting of huge data sets than performing those tasks in parallel can be very efficient. If your inverting a huge matrix, I think it is much less applicable to use a parallel approach. This might be a bit of a kludge as well but for the right problems could be highly scalable.
I think Scala & Akka will become increasingly popular in HPC. Also Groovy with GPars. With version 2.x much of Groovy's performance issues might be solved.
Also there are specialist HPC languages like [x10](http://en.wikipedia.org/wiki/X10_(programming_language) and Fortress
If Mathematica were free, it would be really good for your needs. But it's not.
I have the same questions you do ... tell us if you find something useful.
If you want to stick with R, supposedly Hadoop and Map/Reduce is the way to go. AFAIK R is terrible at memory management, unfortunately.
By definition the word homoiconic means:
Same representation of code and data
In LISP this means that you could have a quoted list and evaluate it, so (car list)
would be the function and (cdr list)
the arguments. This can either happen at compile- or at run-time, however it requires an interpreter.
Is it possible that compiled languages without a compile-time interpreter can be homoiconic as well? Or is the concept of homoiconicity limited to interpreters?
'Homoiconic' is kind of a vague construct. 'code is data' is a bit clearer.
Anyway, the first sentence on Wikipedia for Homoiconic is not that bad. It says that the language has to have a source representation using its data structures. If we forget 'strings' as source representation (that's trivial and not that helpful to have a useful concept 'homoiconic'), then Lisp has lists, symbols, numbers, strings etc. which are used to represent the source code. The interface of the EVAL function determines what kind of source representation the language is working on. In this case, Lisp, it is not strings. EVAL expects the usual variety of data structures and the evaluation rules of Lisp determine that a string evaluates to itself (and thus will not be interpreted as a program expression, but just string data). A number also evaluates to itself. A list (sin 3.0) is a list of a symbol and a number. The evaluation rules say that this list with a symbol denoting a function as the first object will be evaluated as a function application. There are a few evaluation rules like this for data, special operators, macro applications and function applications. That's it.
To make it clear: in Lisp the function EVAL is defined over Lisp data structures. It expects a data structure, evaluates it according to its evaluation rules and returns a result - again using its data structures.
This matches the definition of homoiconic: source code has a native representation using the data types of Lisp.
Now, the interesting part is this: it does not matter how EVAL is implemented. All that matters is that it accepts the source code using the Lisp data structures, that it executes the code and that it returns a result.
So it is perfectly legal that EVAL uses a compiler.
(EVAL code) = (run (compile-expression code))
That's how several Lisp system work, some don't even have an Interpreter.
So, 'Homoiconic' says that the SOURCE code has a data representation. It does NOT say that at runtime this source code has to be interpreted or that the execution is based on this source code.
If the code is compiled, neither the compiler nor an interpreter is needed at runtime. Those would only be needed if the program wants to eval or compile code at runtime - something that is often not needed.
Lisp also provides a primitive function READ, which translates an external representation (S-Expressions) of data into an internal representation of data (Lisp data). Thus it also can be used to translate an external representation of source code into an internal representation of source code. Lisp does not use a special parser for source code - since code is data, there is only READ.
yes. lisp can be compiled to a native binary
Seems to me to be an odd question:
Firstly, the homoiconic portion is the presented interface to the programmer. The point of languages is that they abstract a lower level functionality that preserves the same semantics as the higher level presentation (though a different means).
dsm's machine-code point is a good point, but providing:
why does the lower level implementation matter here?
Also:
compiled languages without a compile-time interpreter
Without some program interpreting it, it would be required to be native to the CPU, therefore the CPU's native language would be required to be homoiconic (or the VM running the code).
Languages without compile-time interpretation ... would be fairly constrained ... as they wouldn't be compiled at all.
But I am no expert, and maybe missing the point.
In the most literal form, C is homoiconic. You can get access to the representation of a function using &functionName
and execute data using somePtrCastToFnPtr(SomeArgs)
. However this is at the machine code level and without some kind of library support you will find it very hard to work with. Some kind of embeddable compiler (I seem to remember that LLVM can do this) would make it more practical.
Lisp is normally compiled. There have been implementations with JIT compilers instead of interpreters.
Hence, it is not necessary to have an interpreter (in the sense of "not a compiler") for code-is-data languages.
The problem is that a lot of processors separate instruction and data areas, and actively prevent programs from modifying their own code. This kind of code used to be called "degenerate code", and considered a very Bad Thing.
Interpreters (and VMs) don't have that problem, as they can treat the whole program as data, with the only "code" being the interpreter.
Yes; you just have to stick a copy of the compiler into the language runtime. Chez Scheme is one of the many fine compilers which do just that.
Machine code itself is homoiconic, so yes.
Data or instructions are just a matter of semantics (and perhaps the segment of memory in which them lie).
Compiling is just optimized interpretation. An interpreter takes a piece of data representing code and then "does" that code: the code's meaning turns into pathways of execution and data flow through the guts of the interpreter. A compiler takes the same data, translates it into another form and then passes it to another interpreter: one implemented in silicon (CPU) or perhaps a fake one (virtual machine).
This why some Lisp implementations are able not to have intepreters. The EVAL function can compile the code and then branch to it. EVAL and COMPILE do not have to have distinct modes of operation. (Clozure, Corman Lisp, SBCL are examples of "compiler only" Lisps.)
The data part in the beginning is the key to the language being homoiconic, not whether or not the execution of code is optimized by compiling. "Code is data" means "source code is data" not "executable code is data". (Of course executable code is data, but by data we mean the overwhelmingly preferred representation of the code that we want to manipulate.)
Languages built on top of VM's (.net clr, jre ect) can use advanced technics that allow on the fly code generation. One of them is IL weaving. Although, its not as clear as eval's of ECMAScript/Lisp/Scheme ect but it can to a some degree emulate such behavior.
For examples check Castle DynamicProxy and for more interactive example check LinqPAD, F# Interactive, Scala interactive.
I'm trying to understand the unification algorithm described in SICP here
In particular, in the procedure "extend-if-possible", there's a check (the first place marked with asterix "*") which is checking to see if the right hand "expression" is a variable that is already bound to something in the current frame:
(define (extend-if-possible var val frame)
(let ((binding (binding-in-frame var frame)))
(cond (binding
(unify-match
(binding-value binding) val frame))
((var? val) ; *** why do we need this?
(let ((binding (binding-in-frame val frame)))
(if binding
(unify-match
var (binding-value binding) frame)
(extend var val frame))))
((depends-on? val var frame)
'failed)
(else (extend var val frame)))))
The associated commentary states:
"In the first case, if the variable we are trying to match is not bound, but the value we are trying to match it with is itself a (different) variable, it is necessary to check to see if the value is bound, and if so, to match its value. If both parties to the match are unbound, we may bind either to the other."
However, I cannot think of a case where this is actually necessary.
What's it's talking about, I think, is where you might have the following frame bindings currently present:
{?y = 4}
And are then asked to "extendIfPossible" a binding from ?z to ?y.
With that "*" check present, when asked to extend "?z" with "?y", we see that "?y" is already bound to 4, and then recursively try to unify "?z" with "4", which results with us extending the frame with "?z = 4".
Without the check, we would end up extending the frame with just "?z = ?y". But in both cases, so long as ?z is not already bound to something else, I don't see the problem.
Note, if ?z had already been bound to something else then the code doesn't reach the part marked "*" (we would have already recursed to unifying with what ?z had already been matched to).
After thinking it over, I have realised that there might be some sort of argument for generating a "simplest" MGU (Most General Unifier). e.g. you might want an MGU with a minimal number of variables referring to other variables... that is, we'd rather generate the substitution {?x = 4, ?y = 4} than the substitution {?x = ?y, ?y = 4}... but I don't think this algorithm would guarantee this behaviour in any case, because if you asked it to unify "(?x 4)" with "(?y ?y)" then you would still end up with {?x = ?y, ?y = 4}. And if the behaviour can't be guaranteed, why the additional complexity?
Is my reasoning here all correct? If not, what's a counter example where the "*" check is necessary to generate a correct MGU?
That's a good question!
I think the reason is that you don't want to end up with circular bindings such as { ?x = ?y, ?y = ?x }
. In particular, unifying (?x ?y)
with (?y ?x)
would give you the circular frame above if you omitted the check. With the check, you get the frame { ?x = ?y } as expected.
Circular bindings in a frame are bad, because they may cause functions performing substitutions using the frame, such as instantiate
, to run in an infinite loop.
Without it, you wouldn't get the most general unifier. There'd still be work to be done: unifying x and y.
I read somewhere where rich hickey said:
"I think continuations might be neat in theory, but not in practice"
I am not familiar with clojure.
1. Does clojure have continuations?
2. If no, dont you need continuations? I have seen a lot of good examples especially from this guy. What is the alternative?
3. If yes, is there a documentation?
When talking about continuations, you'll have to distinguish between two different kinds of them:
First-class continuations - Continuation-support that is deeply integrated in the language (Scheme or Ruby). I doubt that Clojure supports them.
Continuation-passing-style (CPS) - CPS is just a style of coding and any language supporting anonymous function will allow this style (which applies to Clojure too). Example:
-- Standard function
double :: Int -> Int
double x = 2 * x
-- CPS-function - We pass the continuation explicitly
doubleCPS :: Int -> (Int -> res) -> res
doubleCPS x cont = cont (2 * x)
-- Call
print (double 2)
-- Call CPS: Contintue execution with specified anonymous function
double 2 (\res -> print res)
Read continuation on wikipedia.
I don't think that continuations are necessary for a good language but especially first-class continuations and CPS in functional languages like Haskell can be quite useful (Intelligent backtracking example)
I've written a Clojure port of cl-cont which adds continuations to Common Lisp.
Is continuation a necessary feature in a language?
No. Plenty of languages don't have continuations.
If no, dont you need continuations? I have seen a lot of good examples especially from this guy. What is the alternative?
A call stack
A common use of continuations is in the implementation of control structures for: returning from a function, breaking from a loop, exception handling etc. Most languages (like Java, C++ etc) provide these features as part of the core language. Some languages don't (e.g: Scheme). Instead, these languages expose continuatiions as first class objects and let the programmer define new control structures. Thus Scheme should be looked upon as a programming language toolkit, not a complete language in itself.
In Clojure, we almost never need to use continuations directly, because almost all the control structures are provided by the language/VM combination. Still, first class continuations can be a powerful tool in the hands of the competent programmer. Especially in Scheme, continuations are better than the equivalent counterparts in other languages (like the setjmp/longjmp pair in C). This article has more details on this.
BTW, it will be interesting to know how Rich Hickey justifies his opinion about continuations. Any links for that?
Clojure (or rather clojure.contrib.monads
) has a continuation monad; here's an article that describes its usage and motivation.
Also, even if I can use Common Lisp, should I? Is Scheme better?
You have several answers here, but none is really comprehensive (and I'm not talking about having enough details or being long enough). First of all, the bottom line: you should not use Common Lisp if you want to have a good experience with SICP.
If you don't know much Common Lisp, then just take it as that. (Obviously you can disregard this advice as anything else, some people only learn the hard way.)
If you already know Common Lisp, then you might pull it off, but at considerable effort, and at a considerable damage to your overall learning experience. There are some fundamental issues that separate Common Lisp and Scheme, which make trying to use the former with SICP a pretty bad idea. In fact, if you have the knowledge level to make it work, then you're likely above the level of SICP anyway. I'm not saying that it's not possible -- it is of course possible to implement the whole book in Common Lisp (for example, see Bendersky's pages) just as you can do so in C or Perl or whatever. It's just going to harder with languages that are further apart from Scheme. (For example, ML is likely to be easier to use than Common Lisp, even when its syntax is very different.)
Here are some of these major issues, in increasing order of importance. (I'm not saying that this list is exhaustive in any way, I'm sure that there are a whole bunch of additional issues that I'm omitting here.)
NIL
and related issues, and different names.
Dynamic scope.
Tail call optimization.
Separate namespace for functions and values.
I'll expand now on each of these points:
The first point is the most technical. In Common Lisp, NIL
is used both as the empty list and as the false value. In itself, this is not a big issue, and in fact the first edition of SICP had a similar assumption -- where the empty list and false were the same value. However, Common Lisp's NIL
is still different: it is also a symbol. So, in Scheme you have a clear separation: something is either a list, or one of the primitive types of values -- but in Common Lisp, NIL
is not only false and the empty list: it is also a symbol. In addition to this, you get a host of slightly different behavior -- for example, in Common Lisp the head and the tail (the car
and cdr
) of the empty list is itself the empty list, while in Scheme you'll get a runtime error if you try that. To top it off, you have different names and naming convention, for example -- predicates in Common Lisp end by convention with P
(eg, listp
) while predicates in Scheme end in a question mark (eg, list?
); mutators in Common Lisp have no specific convention (some have an N
prefix), while in Scheme they almost always have a suffix of !
. Also, plain assignment in Common Lisp is usually setf
and it can operate on combinations too (eg, (setf (car foo) 1)
), while in Scheme it is set!
and limited to setting bound variables only. (Note that Common Lisp has the limited version too, it's called setq
. Almost nobody uses it though.)
The second point is a much deeper one, and possibly one that will lead to completely incomprehensible behavior of your code. The thing is that in Common Lisp, function arguments are lexically scoped, but variables that are declared with defvar
are dynamically scoped. There is a whole range of solutions that rely on lexically scoped bindings -- and in Common Lisp they just won't work. Of course, the fact that Common Lisp has lexical scope means that you can get around this by being very careful about new bindings, and possibly using macros to get around the default dynamic scope -- but again, this requires a much more extensive knowledge than a typical newbie has. Things get even worse than that: if you declare a specific name with a defvar
, then that name will be bound dynamically even if they're arguments to functions. This can lead to some extremely difficult to track bugs which manifest themselves in an extremely confusing way (you basically get the wrong value, and you'll have no clue why that happens). Experienced Common Lispers know about it (especially those that have been burnt by it), and will always follow the convention of using stars around dynamically scoped names (eg, *foo*
). (And by the way, in Common Lisp jargon, these dynamically scoped variables are called just "special variables" -- which is another source of confusion for newbies.)
The third point was also discussed in some of the previous comments. In fact, Rainer had a pretty good summary of the different options that you have, but he didn't explain just how hard it can make things. The thing is that proper tail-call-optimization (TCO) is one of the fundamental concepts in Scheme. It is important enough that it is a language feature rather than merely an optimization. A typical loop in Scheme is expressed as a tail-calling function (for example, (define (loop) (loop))
) and proper Scheme implementations are required to implement TCO which will guarantee that this is, in fact, an infinite loop rather than running for a short while until you blow up the stack space. This is all the essence of Rainer's first non solution, and the reason he labeled it as "BAD". His third option -- rewriting functional loops (expressed as recursive functions) as Common Lisp loops (dotimes
, dolist
, and the infamous loop
) can work for a few simple cases, but at a very high cost: the fact that Scheme is a language that does proper TCO is not only fundamental to the language -- it is also one of the major themes in the book, so by doing so, you will have lost that point completely. In addition, there are some cases that you just cannot translate Scheme code into a Common Lisp loop construct -- for example, as you work your way through the book, you'll get to implement a meta-circular-interpreter which is an implementation of a mini-Scheme language. It takes a certain click to realize that this meta evaluator implements a language that is itself doing TCO if the language that you implement this evaluator in is itself doing TCO. (Note that I'm talking about the "simple" interpreters -- later in the book you implement this evaluator as something close to a register machine, where you kind of explicitly make it do TCO.) The bottom line to all of this, is that this evaluator -- when implemented in Common Lisp -- will result in a language that is itself not doing TCO. People who are familiar with all of this should not be surprised: after all, the "circularity" of the evaluator means that you're implementing a language with semantics that are very close to the host language -- so in this case you "inherit" the Common Lisp semantics rather than the Scheme TCO semantics. However, this means that your mini-evaluator is now crippled: it has no TCO, so it has no way of doing loops! To get loops in, you will need to implement new constructs in your interpreter, which will usually use the iteration constructs in Common Lisp. But now you're going further away from what's in the book, and you're investing considerable effort in approximately implementing the ideas in SICP to the different language. Note also that all of this is related to the previous point I raised: if you follow the book, then the language that you implement will be lexically scoped, taking it further away from the Common Lisp host language. So overall, you completely lose the "circular" property in what the book calls "meta circular evaluator". (Again, this is something that might not bother you, but it will damage the overall learning experience.) All in all, very few languages get close to Scheme in being able to implement the semantics of the language inside the language as a non-trivial (eg, not using eval
) evaluator that easily. In fact, if you do go with a Common Lisp, then in my opinion, Rainer's second suggestion -- use a Common Lisp implementation that supports TCO -- is the best way to go. However, in Common Lisp this is fundamentally a compiler optimization: so you will likely need to (a) know about the knobs in the implementation that you need to turn to make TCO happen, (b) you will need to make sure that the Common Lisp implementation is actually doing proper TCO, and not just optimization of self calls (which is the much simpler case that is not nearly as important), (c) you would hope that the Common Lisp implementation that does TCO can do so without damaging debugging options (again, since this is considered an optimization in Common Lisp, then turning this knob on, might also be taken by the compiler as saying "I don't care much for debuggability").
Finally, my last point is not too hard to overcome, but it is conceptually the most important one. In Scheme, you have a uniform rule: identifiers have a value, which is determined lexically -- and that's it. It's a very simple language. In Common Lisp, in addition to the historical baggage of sometimes using dynamic scope and sometimes using lexical scope, you have symbols that have two different value -- there's the function value that is used whenever a variable appears at the head of an expression, and there is a different value that is used otherwise. For example, in (foo foo)
, each of the two instances of foo
are interpreted differently -- the first is the function value of foo
and the second is its variable value. Again, this is not hard to overcome -- there are a number of constructs that you need to know about to deal with all of this. For example, instead of writing (lambda (x) (x x))
you need to write (lambda (x) (funcall x x))
, which makes the function that is being called appear in a variable position, therefore the same value will be used there; another example is (map car something)
which you will need to translate to (map #'car something)
(or more accurately, you will need to use mapcar
which is Common Lisp's equivalent of the car
function); yet another thing that you'll need to know is that let
binds the value slot of the name, and labels
binds the function slot (and has a very different syntax, just like defun
and defvar
.) But the conceptual result of all of this is that Common Lispers tend to use higher-order code much less than Schemers, and that goes all the way from the idioms that are common in each language, to what implementations will do with it. (For example, many Common Lisp compilers will never optimize this call: (funcall foo bar)
, while Scheme compilers will optimize (foo bar)
like any function call expression, because there is no other way to call functions.)
Finally, I'll note that much of the above is very good flamewar material: throw any of these issues into a public Lisp or Scheme forum (in particular comp.lang.lisp
and comp.lang.scheme
), and you'll most likely see a long thread where people explain why their choice is far better than the other, or why some "so called feature" is actually an idiotic decision that was made by language designers that were clearly very drunk at the time, etc etc. But the thing is that these are just differences between the two languages, and eventually people can get their job done in either one. It just happens that if the job is "doing SICP" then Scheme will be much easier considering how it hits each of these issues from the Scheme perspective. If you want to learn Common Lisp, then going with a Common Lisp textbook will leave you much less frustrated.
Do you already know some Common Lisp? I assume that is what you mean by 'Lisp'. In that case you might want to use it instead of Scheme. If you don't know either, and you are working through SICP solely for the learning experience, then probably you are better off with Scheme. It has much better support for new learners, and you won't have to translate from Scheme to Common Lisp.
There are differences; specifically, SICP's highly functional style is wordier in Common Lisp because you have to quote functions when passing them around and use funcall
to call a function bound to a variable.
However, if you want to use Common Lisp, you can try using Eli Bendersky's Common Lisp translations of the SICP code.
You can use Common Lisp for learning with SICP without much problems. The Scheme subset that is used in the book is not very sophisticated. SICP does not use macros and it uses no continuations. There are DELAY and FORCE, which can be written in Common Lisp in a few lines.
Also for a beginner using (function foo) and (funcall foo 1 2 3) is actually better (IMHO !), because the code gets clearer when learning the functional programming parts. You can see where variables and lambda functions are being called/passed.
There is only one big area where using Common Lisp has a drawback: tail call optimization (TCO). Common Lisp does not support that in its standard.
There are three ways to live with that:
Personally I would recommend 3., but 2. can work too.
Common Lisp has excellent and easy to use development environments (LispWorks, Allegro CL, Clozure CL on a Mac, MCL, ...) and a few that are not that easy to use, but powerful too (Emacs/SLIME, ...).
Sometimes it might also helpful to write one or two macros to make code look a bit more like Scheme. For example you could have a DEFINE macro in Common Lisp. But that's not strictly necessary and I would not recommend it, unless it should save some time in translating code.
For the more advanced users, there is an old Scheme implementation (called Pseudo Scheme), that should run most of the code in SICP.
My recommendation: if you want to go the extra mile and use Common Lisp, do it.
Edit: Nathan Sanders' comment is correct. It's clearly been a while since I last read the book, but I just checked and it does not use call/cc
directly. I've upvoted Nathan's answer.
Whatever you use needs to implement continuations, which SICP uses a lot. Not even all Scheme interpreters implement them, and I'm not aware of any Common Lisp that does.
They are similar but not the same.
I believe If you go with Scheme it would be easier.
Scheme uses a single namespace for all variables, regardless of whether they are bound to functions or other types of values. Common Lisp separates the two, such that the identifier "hello" may refer to a function in one context, and a string in another.
(Note 1: This question needs an example of the above; feel free to edit it and add one, or e-mail the original author with it and I will do so.)
However, in some contexts, such as passing functions as parameters to other functions, the programmer must explicitly distinguish that he's specifying a function variable, rather than a non-function variable, by using #'
, as in:
I have always considered this to be a bit of a wart, but I've recently run across an argument that this is actually a feature:
...the important distinction actually lies in the syntax of forms, not in the type of objects. Without knowing anything about the runtime values involved, it is quite clear that the first element of a function form must be a function. CL takes this fact and makes it a part of the language, along with macro and special forms which also can (and must) be determined statically. So my question is: why would you want the names of functions and the names of variables to be in the same namespace, when the primary use of function names is to appear where a variable name would rarely want to appear?
Consider the case of class names: why should a class named FOO prevent the use of variables named FOO? The only time I would be referring the class by the name FOO is in contexts which expect a class name. If, on the rare occasion I need to get the class object which is bound to the class name FOO, there is FIND-CLASS.
This argument does make some sense to me from experience; there is a similar case in Haskell with field names, which are also functions used to access the fields. This is a bit awkward:
data Point = Point { x, y :: Double {- lots of other fields as well --} }
isOrigin p = (x p == 0) && (y p == 0)
This is solved by a bit of extra syntax, made especially nice by the NamedFieldPuns
extension:
isOrigin2 Point{x,y} = (x == 0) && (y == 0)
So, to the question, beyond consistency, what are the advantages and disadvantages, both for Common Lisp vs. Scheme and in general, of a single namespace for all values versus separate ones for functions and non-function values?
The two different approaches have names: Lisp-1 and Lisp-2. A Lisp-1 has a single namespace for both variables and functions (as in Scheme) while a Lisp-2 has separate namespaces for variables and functions (as in Common Lisp). I mention this because you may not be aware of the terminology since you didn't refer to it in your question.
Wikipedia refers to this debate:
Whether a separate namespace for functions is an advantage is a source of contention in the Lisp community. It is usually referred to as the Lisp-1 vs. Lisp-2 debate. Lisp-1 refers to Scheme's model and Lisp-2 refers to Common Lisp's model. These names were coined in a 1988 paper by Richard P. Gabriel and Kent Pitman, which extensively compares the two approaches.
Gabriel and Pitman's paper titled Technical Issues of Separation in Function Cells and Value Cells addresses this very issue.
Actually, as outlined in the paper by Richard Gabriel and Kent Pitman, the debate is about Lisp-5 against Lisp-6, since there are several other namespaces already there, in the paper are mentioned type names, tag names, block names, and declaration names. edit: this seems to be incorrect, as Rainer points out in the comment: Scheme actually seems to be a Lisp-1. The following is largely unaffected by this error, though.
Whether a symbol denotes something to be executed or something to be referred to is always clear from the context. Throwing functions and variables into the same namespace is primarily a restriction: the programmer cannot use the same name for a thing and an action. What a Lisp-5 gets out of this is just that some syntactic overhead for referencing something from a different namespace than what the current context implies is avoided. edit: this is not the whole picture, just the surface.
I know that Lisp-5 proponents like the fact that functions are data, and that this is expressed in the language core. I like the fact that I can call a list "list" and a car "car" without confusing my compiler, and functions are a fundamentally special kind of data anyway. edit: this is my main point: separate namespaces are not a wart at all.
I also liked what Pascal Constanza had to say about this.
The biggest downside I see, at least for Common Lisp, is understandability. We can all agree that it uses different namespaces for variables and functions, but how many does it have? In PAIP, Norvig showed that it has "at least seven" namespaces.
When one of the language's classic books, written by a highly respected programmer, can't even say for certain in a published book, I think there's a problem. I don't have a problem with multiple namespaces, but I wish the language was, at the least, simple enough that somebody could understand this aspect of it entirely.
I'm comfortable using the same symbol for a variable and for a function, but in the more obscure areas I resort to using different names out of fear (colliding namespaces can be really hard to debug!), and that really should never be the case.
I've met a similar distinction in Python (unified namespace) vs Ruby (distinct namespaces for methods vs non-methods). In that context, I prefer Python's approach -- for example, with that approach, if I want to make a list of things, some of which are functions while others aren't, I don't have to do anything different with their names, depending on their "function-ness", for example. Similar considerations apply to all cases in which function objects are to be bandied around rather than called (arguments to, and return values from, higher-order functions, etc, etc).
Non-functions can be called, too (if their classes define __call__
, in the case of Python -- a special case of "operator overloading") so the "contextual distinction" isn't necessarily clear, either.
However, my "lisp-oid" experience is/was mostly with Scheme rather than Common Lisp, so I may be subconsciously biased by the familiarity with the uniform namespace that in the end comes from that experience.
The name of a function in Scheme is just a variable with the function as its value. Whether I do (define x (y) (z y))
or (let ((x (lambda (y) (z y))))
, I'm defining a function that I can call. So the idea that "a variable name would rarely want to appear there" is kind of specious as far as Scheme is concerned.
Scheme is a characteristically functional language, so treating functions as data is one of its tenets. Having functions be a type of their own that's stored like all other data is a way of carrying on the idea.
There's good things to both approaches. However, I find that when it matters, I prefer having both a function LIST and a a variable LIST than having to spell one of them incorrectly.
There's an interesting rant on the topic by Erik Naggum: http://groups.google.com/group/comp.lang.lisp/msg/07b915645de0cec7
A phrase that I've noticed recently is the concept of "point free" style...
First, there was this question, and also this one.
Then, I discovered here they mention "Another topic that may be worth discussing is the authors' dislike of point free style."
What is "point free" style? Can someone give a concise explanation? Does it have something to do with "automatic" currying?
To get an idea of my level - I've been teaching myself Scheme, and have written a simple Scheme interpreter... I understand what "implicit" currying is, but I don't know any Haskell or ML.
Just look at the wikipedia-article to get your definition.
Tacit programming (point-free programming) is a programming paradigm in which a function definition does not include information regarding its arguments, using combinators and function composition [...] instead of variables.
Haskell-Example:
Conventional (you specify the arguments explicitly)
sum sum (x:xs) = x + (sum xs)
sum [] = 0
Point-Free (sum
doesn't have any explicit arguments - it's just a fold with +
starting with 0)
sum = foldr (+) 0
Or even simpler: Instead of g(x) = f(x)
, you could just write g = f
.
So yes: It's closely related to currying (or operations like function composition).
Point-free style means that the arguments of the function being defined are not explicitly mentioned, that the function is defined through function composition.
If you have two functions, like
square :: a -> a
square x = x*x
inc :: a -> a
inc x = x+1
and if you want to combine these two functions to one that calculates x*x+1
, you can define it "point-full" like this:
f :: a -> a
f x = inc (square x)
The point-free alternative would be not to talk about the argument x
:
f :: a -> a
f = inc . square
Point free style means that the code doesn't explicitly mention it's arguments, even though they exist and are being used.
This works in Haskell because of the way functions work.
For instance:
myTake = take
returns a function that takes one argument, therefore there is no reason to explicit type the argument unless you just want too.
I come across the word 'thunk' at a lot of places in code and documentation related to Scheme, and similar territories. I am guessing that it is a generic name for a procedure, which has a single formal argument. Is that correct? If yes, is there more to it? If no, please?
For eg. in SRFI 18, in the 'Procedures' section.
It is really simple. When you have some computation, like adding 3 to 5, in your program, then creating a thunk of it means not to calculate it directly, but instead create a function with zero arguments that will calculate it when the actual value is needed.
(let ((foo (+ 3 5))) ; the calculation is performed directly, foo is 8
;; some other things
(display foo)) ; foo is evaluated to 8 and printed
(let ((foo (lambda () (+ 3 5)))) ; the calculation is delayed, foo is a
; function that will perform it when needed
;; some other things
(display (foo))) ; foo is evaluated as a function, returns 8 which is printed
In the second case, foo
would be called a thunk.
Lazy languages blur the line between binding a variable to a value and creating a function to return that value, so that writing something like the first form above is actually treated like the second, under the hood.
Wikipedia has the following answer:
In functional programming, "thunk" is another name for a nullary function ? a function that takes no arguments. Thunks are frequently used in strict languages as a means of simulating lazy evaluation; the thunk itself delays the computation of a function's argument, and the function forces the thunk to obtain the actual value. In this context, a thunk is often called a suspension or (in Scheme) a promise.
Adding a lazy evaluation example in Scheme. Here, promise is another word for thunk.
A "thunk" is a procedure object with no formal arguments, e.g. from your SRFI link:
(lambda () (write '(b1))
The b1 variable is bound in the enclosing block, and this gives us a clue to the etymology of the word "thunk," which relies on a joke about poor English grammar.
A zero-argument function has no way to change its behavior based on parameters it is called with, since it has no parameters. Therefore the entire operation of the function is set -- it is just waiting to be executed. No more "thought" is required on the part of the computer, all of the "thinking" has been done -- the action is completely "thunk" through.
That's all a "thunk" is in this SRFI's context -- a procedure with no arguments.
Check haskell wiki for a good explanation. Also check these lecture notes. Also EoPL provides some explanation.
Check the Hacker's Dictionary under T.
Read this in case you want to read Thunk
in the context of C++.
If Python had a macro facility similar to Lisp/Scheme (something like MetaPython), how would you use it?
If you are a Lisp/Scheme programmer, what sorts of things do you use macros for (other than things that have a clear syntactic parallel in Python such as a while loop)?
I believe that macros run counter to Python's culture. Macros in Lisp allow the big ball of mud approach; you get to redefine the language to become more suited to your problem domain. Conversely Pythonic code uses the most natural built in feature of Python to solve a problem, instead of solving it in a way that would be more natural in a different language.
Macros are inherently unpythonic.
Some examples of lisp macros:
There's a mailing list posting (archive.org mirror) which explains this rather well. The post is about Perl, but it applies to Python just as well.
In lisp, macros are just another way to abstract ideas.
This is an example from an incomplete ray-tracer written in clojure:
(defmacro per-pixel
"Macro.
Excecutes body for every pixel. Binds i and j to the current pixel coord."
[i j & body]
`(dotimes [~i @width]
(dotimes [~j @height]
~@body)))
If you want to do something to every pixel with coordinates (i,j), say, draw a black pixel if i is even, you would write:
(per-pixel i,j
(if (even? i)
(draw-black i,j)))
This is not possible to do without macros because @body can mean anything inside (per-pixel i j @body)
Something like this would be possible in python as well. You need to use decorators. You can't do everything you can do with lisp macros, but they are very powerful
Check out this decorator tutorial: http://www.artima.com/weblogs/viewpost.jsp?thread=240808
See also this question: Pythonic macro syntax
I don't think Python needs macros, because they are useful for 2 things:
Creating a DSL or more eloquent syntax for something (Lisp LOOP macro is a nice example). In this case, Python philosophy decided against it deliberately. If there is some explicit notation you're missing, you can always ask for a PEP.
Making things faster by precomputing things at compile time. Python isn't oriented to speed, so you can always use a function instead.
I am not saying macros are wrong, just that they don't fit Python philosophy. You can always do without them without much code duplication, because you have duck typing and operator overloading.
And as a side note, I would much rather see Lisp's restarts in Python than macros.
Some uses cases I have seen before include making class factories or stripping logging statements out of production code.
Here's one real-world example I came across that would be trivial with macros or real metaprogramming support, but has to be done with CPython bytecode manipulation due to absence of both in Python:
http://www.aminus.net/dejavu/chrome/common/doc/2.0a/html/intro.html#cpython
This is how the problem is solved in Common Lisp using a combination of regular macros, and read-macros to extend the syntax (it could have been done without the latter, but not the former):
http://clsql.b9.com/manual/csql-find.html
The same problem solved in Smalltalk using closures and metaprogramming (Smalltalk is one of the few single-dispatch OO languages that actually gets message passing right):
http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg02096.html
Here I tried to implement the Smalltalk approach in Common Lisp, which is a good illustration of how metaprogramming is poorly supported in the latter:
http://carcaddar.blogspot.com/2009/04/closure-oriented-metaprogramming-via.html
Read "The Lambda Papers" so you might find out generally why one would take advtage of macros at all.
You should start with ?AIM-353 Lambda:The Ultimate Imperative? and follow it with ?AIM-443 Lambda: The Ultimate GOTO?. Both may be found here:
Hy, For my own use, I created a Python module (Espy) that allows macro definitions with arguments, loop and conditional code generation: You create a source.espy file, then launch the appropriate function, then source.py is generated.
It allows syntaxes as following:
macro repeat(arg1):
for i in range(%arg1%):
socket
print "stop"
...
repeat(5):
print "Hi everybody"
print "See you soon"
is equivalent to:
...
for i in range(5):
print "Hi everybody"
print "See you soon"
print "stop"
Other syntax:
macro doit(arg1):
for i in %arg1%:
socket suit(arg2):
socket
print %arg2%
socket check(arg3):
if %arg2%==%arg3%:
socket
...
#use
doit(range(10)):
suit(result):
result=i*i
check(result,25):
print "I knew that 5*5 == 25"
is equivalent to:
for i in range(10):
result=i*i
print result
if result==25:
print "I knew that 5*5 == 25"
More, Espy has 2 functions: "macro for" and "macro if". An example:
macro for v in [6,10,12,20,23]:
macro if 7<%v%<22:
True:
print "At %v%, I'm awake."
False:
print "At %v%, I'm sleeping."
is translated by Espy in:
print "At 6, I'm sleeping."
print "At 10, I'm awake."
print "At 12, I'm awake."
print "At 20, I'm awake."
print "At 23, I'm sleeping."
Complete documentation and free download can be found here: http://elp.chronocv.fr
I use this module in many cases. It permits more structured and shorter codes. With it I generated 65000 lines of clear and efficient python code from 1000 lines of espy code for a new chess engine project (still in progress).
If Python could include macros in futur release, it'd become more impressive.
Possibly if you want the source code at runtime such as for debugging (say printf debugging an expression's value with the name of it so you don't have to write it twice).
The only way I could think of to do it in python is to pass a string to eval.
Well, I'd like instead of
print >> sys.stderr, "abc"
to write
err "abc"
in some scripts which have many debug printout statements.
I can do
import sys
err = sys.stderr
and then
print >> err, "abc"
which is shorter, but that still takes too many characters on the line.
With the thousands of implementations of LISP and Scheme available I'm having a very hard time finding just the right one to use for Windows development. I learned these languages in school and found them to be very elegant, however, I don't seem to be able to find an implementation that would be suitable for developing code other than in an academic setting.
What is a Scheme or LISP implementation with the following requirements?
Compiles to native code, rather than compiling to C.
Supports multithreading on multiple processors (ie. multiple threads can run simultaneously).
Produces 64-bit code.
Can be used in Windows without requiring Cygwin.
Thank you.
Corman Lisp could be interesting, but does not support 64bit code (AFAIK).
Clozure CL is just being ported to Windows, so it is probably not very mature and lacks a few things.
LispWorks and Allegro CL are great, though they don't support multiple concurrent Lisp threads. Currently LispWorks 6 is under development, which will support multiple concurrent Lisp threads. Note though, that for example LispWorks currently can run a single Lisp thread at any one time, but multiple foreign threads.
Dan Weinreb has a survey of Common Lisp implementations.
I'm very fond of Clozure. MIT Scheme will run under Windows, and it's a good choice for beginners because it's going to match The Book best.
The big commercial Common Lisp implementations should meet all your criteria:
LispWorks and Allegro CL.
A fairly complete, usable and free Scheme implementation is PLT Scheme.
The free Clozure CL might also suit your needs.
Clozure CL is being ported for its 1.3 release onto 32 and 64 bit windows.
That 1.3 release is at RC1 as I type this.
There is a supplied example that uses native Win32 API calls via the FFI to display a traditional Win32 window, complete with message loop etc.
The Hunchentoot webserver works on the current builds.
It supports Unicode, so interfacing with the 'W' Win32 APis should be straightforward.
It compiles to native code, supports native threads and does not require cygwin.
Seems like ECL is missing. It is really nice CL implementation that worke on Windows, Linux and Mac, supports native threads on all platforms and allows creating binary files.
This is an excellen description how to install Lisp with Emacs and Slime on Windows XP:
http://www.pchristensen.com/blog/articles/installing-sbcl-emacs-and-slime-on-windows-xp/
I have just finished reading Little Schemer.. Now I am planning on reading Purely Functional Data Structures.. but the notations in the book looks very complicated.. are there easier alternative to this book that talk about data structure in functional languages.. if not then what do I need to read before I can start on this book...
Thanks
Update: It turns out that I was looking at the author's dissertation. I just checked out the book is more friendlier (thanks nlucaroni)
I am currently reading Purely Functional Data Structures, doing all the exercises et cetera. I have been programming ocaml for about a year, so it has been pretty straight forward for me --a few little things here and there with differences between ML and OCAML module and functor signatures that I had to get used to, but it was pretty natural.
I would say learn some introductory ML/OCaml/F# stuff on pattern matching and type signatures, and a bit on modules and functors. Make sure you aren't afraid of recursion as well. Everything I've been exposed to has been done with matching and recursion, and interpreting the type signatures. Building the modules he describes is really an optional task.
I was being silly and neglected some necessary information for defining a functor, and posted some of the code for chapter II on stack overflow. What will also help is looking at the implementations of the data structures already written in ocaml within the standard library.
Also, make sure you are using his book and not his dissertation, as he had to neglect many data structures and introductions in his dissertation since they were not his original work. Also, the source code that is accompanied by the book on Chris' web page (in Haskell and ML), also Ocaml.
Slashdot has a book review with more information if anyone is interested.
Also, post questions here! Good luck!
The main new things with Okasaki are ML notation, algebraic data types, and pattern matching. If you liked the Little Schemer then a natural place to get up to speed on the foundations of ML would be The Little MLer.
Disclaimer: I'm a co-author on the book, although I'm mostly just editing...
You might be interested in Real World Functional Programming by Tomas Petricek and myself. It's aimed primarily at C# developers (your SO history looks appropriate) who want to code in a more functional way. We give examples in C# where possible, and also introduce F#. You can download the first chapter (an old version at the moment, I'm afraid) for free, and although the book hasn't been published yet there's an early access programme (MEAP) which will let you have the chapters as we write/edit them.
If I were you, I'd start with "How to Design Programs". Since you have read "The Little Schemer" you can probably skim some chapters. However HtDP teaches important lessons on how the shape of data dictates the shape of your code. Don't underestimate the importance of the recipes in HtDP!
Now in order to read Okasaki's wonderful book, you only need to learn enough Haskell syntax to understand how constructors and pattern matching are written.
Then most of the code can be ported in a straightforward manner to, say, PLT Scheme. Porting is especially easy if you use a pattern matching library such as "match".
Scheme versions of several of Okasaki's data structures can be found here:
http://planet.plt-scheme.org/package-source/soegaard/galore.plt/1/0/
PS: If you are completely new to the world of data structures, you'll also need an introduction to amortization.
PFDS isn't that bad, really. The notation, as I recall, is just ML. Some exposure to it, or Haskell, should make all the code easy enough to read.
I've been reading through SICP (Structure and Interpration of Computer Programs) and was really excited to discover this wonderful special form: "make-environment", which they demonstrate to use in combination with eval as a way of writing modular code (excerpt from section 4.3 on "packages"):
(define scientific-library
(make-environment
...
(define (square-root x)
...)))
They then demonstrate how it works with
((eval 'square-root scientific-library) 4)
In their example, they then go on to demonstrate exactly the usage that I would want - an elegant, minimalist way of doing the "OO" style in scheme... They "cons" together a "type", which is actually what was returned by the "make-environment" special form (i.e. the vtable), and an arg ("the state")...
I was so excited because this is exactly what I've been looking for as a way to do polymorphic dispatch "by symbol" in Scheme without having to write lots of explicit code or macros.
i.e. I want to create an "object" that has, say, two functions, that I call in different contexts... but I don't want to refer to them by "car" and "cdr", I want to both declare and evaluate them by their symbolic names.
Anyway, when I read this I couldn't wait to get home and try it.
Imagine my disappointment then when I experienced the following in both PLT Scheme and Chez Scheme:
> (make-environment (define x 3))
Error: invalid context for definition (define x 3).
> (make-environment)
Error: variable make-environment is not bound.
What happened to "make-environment" as referenced in SICP? It all seemed so elegant, and exactly what I want, yet it doesn't seem to be supported in any modern Scheme interpreters?
What's the rationale? Is it simply that "make-environment" has a different name?
More information found later
I took at look at the online version:
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-28.html#%_sec_4.3
I was reading was the first edition of SICP. The second edition appears to have replaced the discussion on packages with a section on non-deterministic programming and the "amp" operator.
After more digging around I discovered this informative thread on newsnet:
"The R5RS EVAL and environment specifiers are a compromise between those who profoundly dislike first-class environments and want a restricted EVAL, and those who can not accept/understand EVAL without a second argument that is an environment."
Also, found this "work-around":
(define-syntax make-environment
(syntax-rules ()
((_ definition ...)
(let ((environment (scheme-report-environment 5)))
(eval '(begin definition
...)
environment)
environment))))
(define arctic
(make-environment
(define animal 'polarbaer)))
(taken from this)
However, I ended up adopting a "message passing" style kinda of like the first guy suggested - I return an alist of functions, and have a generic "send" method for invoking a particular function by name... i.e something like this
(define multiply
(list
(cons 'differentiate (...))
(cons 'evaluate (lambda (args) (apply * args)))))
(define lookup
(lambda (name dict)
(cdr (assoc name dict))))
; Lookup the method on the object and invoke it
(define send
(lambda (method arg args)
((lookup method arg) args))
((send 'evaluate multiply) args)
I've been reading further and am aware that there's all of CLOS if I really wanted to adopt a fully OO style - but I think even above is somewhat overkill.
Scheme has no first-class environments because of performance reasons. When Scheme was created, it wasn't the fastest language around due to nifty stuff like first-class functions, continuations, etc. Adding first-class environments would have crippled the performance even further. So it was a trade-off made in the early Scheme days.
They wrote it like that because MIT Scheme does, in fact, have first-class environments, and presumably that's what the writers were planning to teach their class with (since the book was written at MIT).
Check out http://groups.csail.mit.edu/mac/projects/scheme/
However, I've noticed that MIT Scheme, while still somewhat actively developed, lacks many of the features that a really modern Scheme would have, like a foreign function interface or GUI support. You probably wouldn't want to use it for a serious software development project, at least not by itself.
Would a classical dispatcher function work? I think this is similar to what you're looking for.
(define (scientific-library f)
(define (scientific-square-root x) (some-scientific-square-root x))
(cond ((eq? f 'square-root) scientific-square-root)
(else (error "no such function" f))))
(define (fast-library f)
(define (fast-square-root x) (some-fast-square-root x))
(cond ((eq? f 'square-root) fast-square-root)
(else (error "no such function" f))))
((scientific-library 'square-root) 23)
((fast-library 'square-root) 23)
You could even combine the example scientific and fast libraries into one big dispatch method:
(define (library l f)
(define (scientific-library f)
...)
(define (fast-library f)
...)
(cond ((eq? l 'scientific) (scientific-library f))
((eq? l 'fast) (fast-library f))
(else (error "no such library" l))))
(library 'fast 'square-root)
I've tried several times to grasp the concept of continuations and call/cc. Every single attempt was a failure. Can somebody please explain me these concepts, ideally with more realistic examples than these on Wikipedia or in other SO posts.
I have background in web programming and OOP. I also understand 6502 assembly and had a minor randez-vous with Erlang. However still, I can't wrap my head around call/cc.
Look, i've found this Continuation Passing Style best description on this topic.
To compare it to C, the current continuation is like the current state of the stack. It has all the functions waiting for the result of the current function to finish so they can resume execution. The variable captured as the current continuation is used like a function, except that it takes the provided value and returns it to the waiting stack. This behavior is similar to the C function longjmp where you can return to lower portions of the stack immediately.
(define x 0) ; dummy value - will be used to store continuation later
(+ 2 (call/cc (lambda (cc)
(set! x cc) ; set x to the continuation cc; namely, (+ 2 _)
3))) ; returns 5
(x 4) ; returns 6
One key difference between the C stack and a continuation is that a continuation can be used at any point in the program, even if the state of the stack has changed. This means that you can essentially restore earlier versions of the stack and use them again and again, leading to some unique program flow.
(* 123 (+ 345 (* 789 (x 5)))) ; returns 7
reason: it is because (x 5) replaces the existing continuation,
(* 123 (+ 345 (* 789 _))), with x, (+ 2 _), and returns
5 to x, creating (+ 2 5), or 7.
The ability to save and restore the state of a program has much in common with multithreading. In fact, you can implement your own thread scheduler using continuations, as I've attempted to illustrate here.
A trivial example of using continuation would be implementing a thread (fiber if you wish) manager on a single-processor machine. The scheduler would interrupt the execution flow periodically (or, in the case of fibers, be invoked at various strategic points in the code), save the continuation state (corresponding to the current thread), then switch to a different continuation state (corresponding to a different thread whose state was saved previously.)
Referring to your assembly background, the continuation state would capture such details as instruction pointer, registers, and stack context (pointer), to be saved and restored at will.
Another way of using continuation would be to think of replacing method calls with several thread-like entities that co-exist in parallel (either running or suspended) passing control to each other using continuation contexts instead of the 'classic' call
paradigm. They would operate on global (shared) data instead of relying on parameters. This is to some extent more flexible than call
in the sense that stack does not have to wind up then down (calls
are nested), but control can pass around arbitrarily.
Attempting to visualize this concept in a language such a C, imagine having one big loop with a single switch(continuation_point) { case point1: ... }
statement, where each case
corresponds to a continuation-savepoint, and where the code inside each case
can alter the value of continuation_point
and relinquish control to that continuation_point
by break
ing from the switch
and engaging the next iteration in the loop.
What is the context of your question? Any particular scenarios you are interested in? Any particular programming language? Is the thread/fibre example above sufficient?
The thing that helped me is the idea that in a traditional language with function calls you implicitly pass a continuation any time you make a function call.
Before jumping to a function's code you save some state on the stack (i.e. you push your return address and the stack already contains your locals). This is essentially a continuation. When the function has finished it has to determine where to send the flow of execution. It uses the continuation stored on the stack, popping the return address and jumping to it.
Other languages generalise this idea of continuations allowing you to specify explicitly where to continue the code execution, rather than implicitly continuing on from where the function call was made.
EDIT based on comment:
The continuation is the complete execution state. At any point of execution you can divide the program into two parts (in time, not space) - that which has run to this point, and everything that's going to run from here. The "current continuation" is the "everything that's going to run from here" (you can think of it kind of like a function that will do everything the rest of your program would've done). So the function you supply to call/cc
gets passed the continuation that was current when call/cc
was invoked. The function can use the continuation to return execution to the call/cc
statement (more likely though it'll pass the continuation around to something else, because if it used it directly it could do a simple return instead).
There are multiple levels to understanding call/cc. First you need to understand the terms and the how the mechanism works. Then an understanding of how and when call/cc is used in "real life" programming is needed.
The first level can be reached by studying CPS, but there are alternatives.
For the second level I recommend the following classic by Friedman.
Daniel P. Friedman. "Applications of Continuations: Invited Tutorial". 1988 Principles of Programming Languages (POPL88). January 1988.
When I was trying to understand call/cc, I found this call-with-current-continuation-for-C-programmers page was helpful.
The best explanation I've seen is in Paul Graham's book, On Lisp.
Take a look at the description and implementation of call/cc for FScheme: http://blogs.msdn.com/b/ashleyf/archive/2010/02/11/turning-your-brain-inside-out-with-continuations.aspx
The model I used for understanding continuations from an imperative standpoint is that it is a copy of the call-stack combined with the a pointer to the next instruction.
Call/cc calls a function (passed as an argument) with the continuation as an argument.
Is there a way to construct a self-referential data structure (say a graph with cycles) in lisp or scheme? I'd never thought about it before, but playing around I can find no straightforward way to make one due to the lack of a way to make destructive modification. Is this just an essential flaw of functional languages, and if so, what about lazy functional languages like haskell?
In Common Lisp you can modify list contents, array contents, slots of CLOS instances, etc.
Common Lisp also allows to read and write circular data structures. Use
? (setf *print-circle* t)
T
; a list of two symbols: (foo bar)
? (defvar *ex1* (list 'foo 'bar))
EX1
; now let the first list element point to the list,
; Common Lisp prints the circular list
? (setf (first *ex1*) *ex1*)
#1=(#1# BAR)
; one can also read such a list
? '#1=(#1# BAR)
#1=(#1# BAR)
; What is the first element? The list itself
? (first '#1=(#1# BAR))
#1=(#1# BAR)
?
So-called pure Functional Programming Languages don't allow side-effects. Most Lisp dialects are not pure. They allow side-effects and they allow to modify data-structures.
See Lisp introduction books for more on that.
Common Lisp supports modification of data structures with setf
.
You can build a circular data structure in Haskell by tying the knot.
In Scheme, you can do it easily with set!
, set-car!
, and set-cdr!
(and anything else ending in a bang ('!'
), which indicates modification):
(let ((x '(1 2 3)))
(set-car! x x)
; x is now the list (x 2 3), with the first element referring to itself
)
You don't need `destructive modification' to construct self-referential data structures; e.g., in Common Lisp, '#1=(#1#)
is a cons-cell that contains itself.
Scheme and Lisp do not lack of way to make destructive modification: you can construct the circular cons above alternatively like this: (let ((x (cons nil nil))) (rplaca x x) x)
Can you let us know what material you're using while learning Lisp/Scheme? I'm compiling a target list for our black helicopters; this spreading of misinformation about Lisp and Scheme has to be stopped.
Not only is it possible, it's pretty central to the Common Lisp Object System: standard-class is an instance of itself!
I upvoted the obvious Scheme techniques; this answer addresses only Haskell.
In Haskell you can do this purely functionally using let
, which is considered good style. One nice example is regexp-to-NFA conversion. You can also do it imperatively using IORef
s, which is considered poor style as it forces all your code into the IO monad.
In general Haskell's lazy evaluation lends itself to lovely functional implementations of both cyclic and infinite data structures. In any complex let
binding, all things bound may be used in all definitions. For example translating a particular finite-state machine into Haskell is a snap, no matter how many cycles it may have.
Yes, and they can be useful. One of my college professors created a Scheme type he called Medusa Numbers. They were arbitrary precision floating point numbers that could include repeating decimals. He had a function:
(create-medusa numerator denominator) ; or some such
which created the Medusa Number that represented the rational. As a result:
(define one-third (create-medusa 1 3))
one-third => ; scheme hangs - when you look at a medusa number you turn to stone
(add-medusa one-third (add-medusa one-third one-third)) => 1
as said before, this is done with judicious application of set-car! and set-cdr!
CLOS example:
Hmm, self referential data structures in Lisp/Scheme, and SICP streams are not mentioned? Well, to summarize, streams == lazily evaluated list. It might be exactly the kind of self reference you've intended, but it's a kind of self reference.
So, cons-stream
in SICP is a syntax that delays evaluating its arguments. (cons-stream a b)
will return immediately without evaluating a or b, and only evaluates a or b when you invoke car-stream
or cdr-stream
From SICP, http://mitpress.mit.edu/sicp/full-text/sicp/book/node71.html: >
(define fibs
(cons-stream 0
(cons-stream 1
(add-streams (stream-cdr fibs)
fibs))))This definition says that fibs is a stream beginning with 0 and 1, such that the rest of the stream can be generated by adding fibs to itself shifted by one place:
In this case, 'fibs' is assigned an object whose value is defined lazily in terms of 'fibs'
Almost forgot to mention, lazy streams live on in the commonly available libraries SRFI-40 or SRFI-41. One of these two should be available in most popular Schemes, I think
I stumbled upon this question while searching for "CIRCULAR LISTS LISP SCHEME".
This is how I can make one (in STk Scheme):
First, make a list
(define a '(1 2 3))
At this point, STk thinks a is a list.
(list? a)
> #t
Next, go to the last element (the 3
in this case) and replace the cdr
which currently contains nil
with a pointer to itself.
(set-cdr! (cdr (cdr a)) a)
Now, STk thinks a is not a list.
(list? a)
> #f
(How does it work this out?)
Now if you print a
you will find an infinitely long list of (1 2 3 1 2 3 1 2 ...
and you will need to kill the program. In Stk you can control-z
or control-\
to quit.
But what are circular-lists good for?
I can think of obscure examples to do with modulo arithmetic such as a circular list of the days of the week (M T W T F S S M T W ...)
, or a circular list of integers represented by 3 bits (0 1 2 3 4 5 6 7 0 1 2 3 4 5 ..)
.
Are there any real-world examples?
To piggyback on http://stackoverflow.com/questions/59428/learning-lisp-scheme-interpreter,
O gods of StackOverflow:
Which Lisp (dialect) should I learn, and why?
The fragmentation between CL and Scheme slows uptake (at least for me!).
So give me the True Answer, please.
I have tried to read feature comparisons, and they seem to get bogged down in esoterica (that I don't fully understand) like whether the dialect is fully tail-recursive, and the like. I'm hoping you all (collectively) can make the opaque differences clear.
Things I like: good library support (me=spoiled by python), good environments, unicode support.
Things I dislike: flamewars. Features that are useful at the beginning, but interfere with long-term learning.
Thanks! (please keep it flame free).
updates:
Clojure is an actively developed, modern dialect of Lisp. It's based on the JVM, so all the Java libraries are immediately available, and therefore also has Unicode support.
This is one alternative, not the One True Answer.
If you want avoid flamewars and you enjoy libraries go with Clojure. It's small, it's fast, and the community is helpful and non-dogmatic. It's Lisp minus the absurd cruft of the 1980s . It has a BDFL and if you have a good idea there's a damn good chance it will get implemented into the language.
I have toyed around with Common Lisp, it's a beautiful thing. I've completed the first 3 chapters and the Metacircular Evaluator in SICP in DrScheme, and that is beautiful thing as well. Of course, you will benefit greatly from learning these.
But, over time I have come to hold small languages dear to my heart. I won't lie, I love Javascript and I love C (and goddammit if every language doesn't have a C core at it's heart) because they are small.
Clojure is small. It is elegant. It is a language for our times.
Contra Chuck, an advantage of Common Lisp is that it has a standard that implementations stick to and strive for, such that you can develop largely with SBCL (which has excellent type checking and inference) and then, say, deploy as an executable linked with C libraries (with ECL or others) or as a .jar making use of Java libraries (with ABCL), or with a Mac or a Windows-native GUI (Clozure, both). Common Lisp is amazingly portable across architectures and over implementations and over time, and Common Lispers make efforts to keep things this way, with the support of the language. As an illustration, one silly divergence of unstandardized behavior is the question "is this a special variable?" So I answered it across the implementations I use:
#-abcl
(defun special-variable-p (symbol)
#+ecl(si:specialp symbol)
#+ccl(proclaimed-special-p symbol)
#+sbcl(equal '(:special t)
(multiple-value-list-int:info :variable :kind symbol)))
which reduces, at read time, to nothing on ABCL (it has this already), to (defun special-variable-p (symbol) (si:specialp symbol))
on ECL, and so on. So I can put this in my .rc files and use the common function at the REPL. But this isn't very important: this isn't threading or variously-backed networking or a Communicating Sequential Processes library. This last example just has one #+sbcl/#-sbcl
even as it runs on five implementations. Because it relies on code that's been carefully ported.
But what permits this (and other) advantages also poses its own challenge to the learner: Common Lisp is a very big language. It isn't something you can slurp up in a week or two, like I did Clojure (but my Clojure is already decaying with the breaking changes set to roll out - that language, although heavy with its own merits, reminded me by contrast of a lot of what I like about Common Lisp.) So you should read a lot of this page, and keep the HyperSpec a keypress away (for me, M-x hyperspec RET do-symbols RET
is sufficient nearness to the Bible.), and think about buying a few books. I have Practical Common Lisp, just got Let Over Lambda, and will buy PAIP real soon now.
But even if Common Lisp is the True Answer, you won't completely waste your time by 'just picking' some deceptively flashy alternative (-- 'deceptive' because commonplace CL doesn't show you all that its macros can do, and it has more kinds of macros than anybody. The usual comparison is between bad CL and syntax-optimized alternative X). You'll still learn the basics, you can still use much of what you can read in SICP, On Lisp, The Little Schemer, etc. A lisp, even the wrong lisp, is still better than a non-lisp. (But you'll spend some of your time implementing parts of the right lisp, poorly, in the wrong lisp. Meta-Greenspun.)
Clojure is a great dialect of LISP that promotes functional programming. It runs on the JVM so you have access to any Java libraries you might be used to using. The site has great documentation and screencasts to help you learn. Another advantage is that it's really easy to install, unlike a lot of other dialects.
If you're just looking to grok the concepts Emacs (EmacsLISP specifically) is another alternative. It comes with incredible documentation, tutorials, and lots of code samples. Screencasts are fairly easy to find as well. One of the great benefits of Emacs is that the editor is written in LISP so the editor naturally has very good support for running, editing and debugging LISP. In addition, you can extend the editor to make your every day text editing needs easier while you learn LISP.
Lisp's biggest problem is that there's no overriding standard everyone sticks to. You don't just have to pick between Common Lisp and Scheme; you have to pick between several incompatible implementations of Common Lisp and several incompatible implementations of Scheme, as well as other little things like Arc and Clojure.
I would recommend starting with MzScheme. It's popular, it's actively developed, it has many libraries offering the features of a modern programming environment, and Scheme is somewhat simpler (not to say better, just simpler) than Common Lisp.
Just pick one, and learn it. By the time you figure out the differences, you'll be in a position to choose again, if you chose badly the first time.
for me, the foundational theory of Scheme is far more convincing. PLTScheme is, by far, the most actively developed LISP i've found. unfortunately, it has a proliferation of typing that obscures the beauty of LISP.
i'd love to see something like arc succeed, but it seems unlikely.
Conjecture: when learning your first lisp, don't learn one you'll end up using for end development.
Lemma: learn Arc. It's all of the "hard to grok" things in lisp - closures, macros, continuations, with none of Clojure's Java interop complexity, CL's namespace confusion, or Scheme's name fragmentation. If you're dedicated, you can learn all of these things in a weekend. If you're sharp and dedicated, in a night.
And it'll make learning all the other lisps a lot easier.
I do not know Lisp but heres why I think PLT Scheme is a good choice:
Really Good Documentations
http://download.plt-scheme.org/doc/html/
DrScheme
DrScheme is an amazing programming environment that comes with a compiler, stepper, syntax checkers, REPL, myriad of languages support and is extensible. This makes the entire experience fun. See some screenshots
Good Support from the community.
The community is very enthusiastic about their language and very supportive too. If you have any questions, mailing lists, groups and forums are available. Even the authors are very very accessible.
Continuing Research
PLT is very active and continue to make their tool better and better. You can expect a lot of innovations from the labs. eg. Im pretty excited about using this: http://blog.plt-scheme.org/2009/05/typed-scheme-20.html
Free Books and interesting tutorials to get you started.
http://www.htdp.org/
http://world.cs.brown.edu/
Good modules and extensive libraries.
http://www.cs.utah.edu/plt/develop/
http://planet.plt-scheme.org/ also see docs
If you are learning Scheme, give DrScheme a try.
Take a look at IronScheme.
Go with Clojure. It's an amazing language with full access to any Java library. It has been in development for just over 2 years and already has 3 IDE plugins in development and a book being published in April about it. It's very fast, very elegant and beautiful. You can't go wrong with Clojure.
Learn elisp so you can extend Emacs.
You know... When I got interested in Lisp I also thought I'd have to choose. Then, after reading and asking a lot, I ended up choosing Common Lisp. Not because it's "better" than Scheme in an absolute way, but because it had features I knew I'd probably use in the next 2-3 years in my projects:
So if I were you, I'd start learning a tiny bit of each language, and find out what are the relative strengths and weaknesses of each (I mean, those related to what you'll need/want to do most often) so you I could pick one. You may just find out that you'll learn the other later also (happened to me -- I had to learn more Scheme after one year studying Common Lisp)
As to Arc, Clojure and Lush, and don't know those. I suppose the same argument could apply to them too... The reasons I didn't want to invest too much on them were: Arc does not seem to be interesting for numerical computing, and P. Graham seems obssessed by code size (to the point of making his code unreadable); Clojure seems nice, but I don't like the JVM. And Lush... Well, besides using dynamic scope, the compiled and interpreted versions of the language are very different -- and you can't compile recursive functions. So, it was either Scheme or Common Lisp to me.
I think you either want Common Lisp or PLT Scheme.
The former comes with a lot of freedom and power (that might overwhelm you at first) and the latter comes with a bunch of libraries, matching tutorials and a well-integrated IDE.
Pick anything but Clojure, go with it, and you will be in a better position to evaluate later.
You phrased this question as which Lisp is the best medium for learning Lisp, and to me that has to include a Lisp that is built up from low level primitives, whereas large parts of Clojure are written in Java.
If you had phrased this question as which is the best Lisp to start a new project in, then Clojure may be the best choice.
I am a fan of Scheme, but it has been more than 10 years since I did anything with Scheme.
like others have said - just pick one and go.
There are very few real choices there, either SBCL, Clojure or PLTScheme.
I am looking for a version of Scheme or even LISP that I can use to recover some lost Lisp development skills. Some web capabilities would be nice but not essential.
I've looked at Plt and MIT scheme and, while both look pretty good, the Plt seems to be more feature rich. I've also looked at Lisp implementations but all of the seem quite expensive.
I favor free/inexpensive implementations as this is truly likely to just be occasional hobby programming. What recommendations would you have? Thanks!
Update: Thank you to everyone who answered and/or voted.
I'd go with PLT. It may not be as fast as SBCL, but it does have excellent libraries and documentation, as well as an integrated environment that's designed to get you developing and running Scheme programs right out of the gate. What I really like about PLT's DrScheme is what you don't have to do - you don't have to learn Emacs, you don't have to learn SLIME, you don't have to worry about hunting down third-party libraries, as virtually all libraries meant for PLT Scheme can be found on PLaneT. All in all, it really cuts down on the learning curve and allows you to focus on the actual task at hand: writing great code.
Also, it comes with a web server if you want to make Scheme-powered websites (which I'm currently looking into).
I did quite a bit of experimenting with this.
Clozure Common Lisp (neé Open MCL) is by far the fastest; 25-30 percent faster than the next comptetitor on my intel Mac Mini.
MIT Scheme works quite nicely on a Mac. I think I eventually compiled it myself, but there are binaries at that site. PLT Scheme is also nice, and possibly a little better integrated into the Mac world.
I'm a huge fan of Clojure, SBCL, and Clozure CL. They are all fantastic, but they are also overkill if all you want to do is refresh your Lisping chops. They all require absurd amounts of info hunting, mailing list searching, package installing, irc lurking, etc.
Dr Scheme just installs and runs. I finished the first 3 chapters of SICP four and half years ago using Dr Scheme. Nothing was more profound than defining a Scheme evaluator in itself. Once you get your head around that you'll have a lot more patience for the industrial strength brethren.
For Scheme, DrScheme is awsome (included in PLT Scheme).
For Common Lisp, Ready Lisp is great. A single dmg with SBCL, Aquamacs and Slime working out of the box.
From the Web site:
Ready Lisp is a binding together of several popular Common Lisp packages especially for Mac OS X, including: Aquamacs, SBCL and SLIME. Once downloaded, you?ll have a single application bundle which you can double-click ? and find yourself in a fully configured Common Lisp REPL.
It?s ideal for OS X users who want to try out the beauty of Common Lisp with a minimum of hassle. It could also be used by teachers to give their Mac students a free, complete Common Lisp environment to take home with them. Requirements
The current version of Ready Lisp is 20090127 and requires Mac OS X 10.5 (Leopard).
It includes the following component software versions:
Aquamacs 1.6
SBCL 1.0.24
SLIME 2009-01-23
CL-FAD 0.6.2
CL-PPCRE 2.0.1
LOCAL-TIME 0.9.3
SERIES 2.2.10
CL HyperSpec 7.0
paredit.el 20
redshank.el 1
cldoc.el 1.16
If you are looking for Scheme you can take a look at just released JazzScheme.
I've just started playing with Clojure. It apparently has a nice web framework, and compiles to JVM bytecode.
I also use DrScheme quite a lot. It's a simple yet useful IDE.
Depending how you define "Lisp", Clojure may fit the bill. It runs on OS X fine (it runs anywhere the JVM runs). It has web capabilities and it's free.
It also has the benefit of being new and fresh and fun to use. Might be ideal for hobby programming. It's easy to write web apps or GUI apps (using Java's Swing or even Qt).
I haven't used it myself, but Steel Bank Common Lisp has received some favourable buzz over at reddit. It's open source and free so the price is right for some hobby programming.
In the past, I've had GNU Common Lisp running on my macbook pro.
If you're just hobby programming, LispWorks has a free, personal version which is quite powerful and sophisticated. It's biggest issue is a run time limit of several hours. So, you won't be writing any long running servers in it, but that doesn't mean it's not a useful tool.
CLISP runs on most everything, and is quite nice actually, it just doesn't do threads. (Important if you want to write an actual server, but as PHP and Perl have shown us, Apache + [insert language] is a very viable platform.)
You might want to look at what's at the Association of Lisp Users or the Common Lisp Wiki to see what's there. I set myself up with Steel Bank Common Lisp and Emacs, but have done little with it so far.
I've been asking myself the same question lately. Having used DrScheme on OS X it would be my first choice of Scheme distribution for any platform. Very nice IDE, debugging features and a good set of libraries/frameworks (including a very nice GUI toolkit that 'just works... even on Mac' ;-))
However, I'm now looking for a similarly comfortable environment for Common Lisp. It came down to CCL (OpenMCL) versus SBCL. SBCL seems to be the popular choice but I read that on OS X is doesn't support threading. (Is this really an issue?). Clozure CL, on the other hand, boasts good support for native threads, the obcj-bridge, etc...
I'm finding CCL a little odd but I'm going to stick at it for a while - It still looks like the logical choice for integration.
I use Emacs 23 (built from source using --with-ns) and Slime as an environment and this works well for me. :-)
Clozure CL is available for free from the mac store!
I have been programming in Python, PHP, Java and C for a couple or years now, and I just finished reading Hackers and Painters, so I would love to give LISP a try!
I understand its totally diferent from what i know and that it won't be easy. Also I think (please correct me if I'm wrong) there's way less community and development around LISP. So my question is: what's the best way to learn LISP?
I wouldn't mind buying books or investing some time. I just don't want it to be wasted.
The "final" idea would be to use LISP for web development, and I know that's not so common so... I know it's good to plan my learning before picking the first book or tutorial and spending lots of time on something that may not be the best way!
Thank you all for your answers!
edit: I read Practical Common Lisp and was: ... long, hard, interesting and definitely got me rolling in Lisp, after that i read the little schemer, and it was short, fun and very very good for my overall programming. So my recommendation would be to read first the little schemer, then (its a couple of hours and its worth it) if you decide lisp(or scheme or whatever dialect) is not what you where looking for, you will still have a very fun new way of thinking about recursion!
Try reading Practical Common Lisp, by Peter Seibel.
My personal favorite is Abelson & Sussman Structure and Interpretation of Computer Programs. It uses Scheme, which is a nice and clean dialect of Lisp.
If you like a more practical approach maybe you should pick some Lisp framework for web design (I have no idea if such a beast exists) and jump right in.
MIT has made available an entire LISP course in DIVX and MPEG format. I highly recommend it.
http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/
You might want to start with The Little Schemer as a warm-up. It's not a practical book about writing production Lisp programs, but it's a great book for learning how to think in Lisp.
I'd recommend Project Euler as an excellent source of small bite-sized problems you can use to teach yourself any new programming language.
There are several options here. First of all, Scheme and Common Lisp are fairly different in rather deep ways (like scoping); you should pick one to start with and stick with it for a while. I'm a Common Lisp fan, but that may be one of those vi-vs-EMACS religious questions.
For Scheme, go for Kent Dybvig's Scheme Programming Language, followed by SICP.
For Common Lisp, as well as Practical Common Lisp, I'd recommend David Lamkins's Successful Lisp. Successful Lisp is also available online for free.
After than, look at Lisp in Small Pieces by Queinnec, and Norvig's Lisp in AI book.
Marty Hall has a nice list at Johns Hopkins.
Updated: I don't mean stick to it forever, just that trying to learn both at once would be confusing.
I know this thread is old, but there is now a book out called 'Land of LISP' that teaches LISP programming through writing 80's style text games. I'm reading it now, and it's very well written and doesn't take itself too seriously, which I like.
For serious learners, I'd recommend PAIP from Norvig. It is an excellent resource to learn both Lisp and AI.
Berkeley offers CS61a in podcast format. This is an intro to CS class based around SICP. It's a more modern version than the 1982 videos MIT has available.
For web development you might want to have a look at hunchentoot, a web server written in common lisp.
Ansi Common Lisp by Paul Graham is a good book.
I think it might be out of print, so your best bet to get it via Amazon. I got the book for a "Natural Language Processing" class I took my sophomore year in college. We had to write the programing projects in LISP, and so I needed to learn Lisp quickly.
The book helped me quite a bit.
I enjoyed reading Practical Common LISP and ANSI Common LISP.
On LISP looks interesting, but at $190 seems a little expensive for a book.
Once I had a problem. I didn't know lisp. So I decided to download LISP in a box.
Then I found myself with an Emacs install without any help or documentation.
Then I had two problems.
I found working through the exercises in "The Little Schemer" really helped hone the recursive, pattern-matching side of my thinking and made working in XSLT considerably easier.
Pick up The Land of Lisp by Conrad Barski. It is a fun filled introduction to Lisp programming using cartoons and games.
I found reading the book SICP really helped me learn. I used Steel Bank Common Lisp (SBCL) and had good success with it.
Good luck
I'm working my way through Lisp right now and have come across "the book" to learn Lisp. It was suggested by Rainer Joswig
The book is called Common Lisp: A Gentle Introduction to Symbolic Computation and can be downloaded as a PDF. The author begins with a UML like approach to Lisp in the first chapter and gradually introduces more and more Lisp syntax.
I've also looked at practical lisp and I think that the author glosses over a lot of required information, even for a seasoned programmer. This book doesn't seem to do that (I'm not completely finished, but have found it useful enough to suggest).
one more thing, you'll need an environment to work in. I've found Lisp in a Box to work well. It runs on Windows and Linux and uses eMacs.
Sort of a difficult question to answer ... I think it all depends on your learning style.
I learned LISP in my A.I. and Expert Systems classes in college, but that's how I learn ... I'm not a great book learner, I prefer to have someone explain it to me in a class setting.
LISP is definitely a unique language and it requires a new train of thought if you're used to conventional C, Java, PHP programming.
Best of luck to you !
I don't know that there's anything special about Lisp that makes it different from learning any other language. You just need to start using it and trying out its features.
One option might be to try a simple project.
Another option, that's specific for Lisp, would be to write an Emacs extension that assists you in your regular work.
Grab a bucket of ('s and)'s and go to town..
Read these books in order: Gentle Introduction to Symbolic Computation, ANSI Common Lisp by Paul Graham and then move onto Practical Common Lisp. Or skip ACL and use it as a reference while working your way through PCL.
I recommend Gentle Introduction to Symbolic Computation or Practical Common Lisp first, based on your programming experiences. For practicing, I use Allegro CL 8.2 Free Express Edition in Windows. It turns practicing into a lot of fun.
I'm interested in what tools and methods are used for diagnosing flaws in large scale functional programs. What tools are useful? My current understanding is that 'printf' debugging (e.g. add logging and redeploy) is what is typically used.
If you've done debugging of a functional system what was different about it then debugging a system built with an OO or procedural language?
Sadly, printf
debugging seems to be the state of practice for Standard ML, Objective Caml, and Haskell. There's a little bit of debugging at the interactive read-eval-print loop, but once your app hits 25,000 or 50,000 lines that's less useful.
If you're lucky enough to be using Haskell, there's an exception: QuickCheck is indispensible for testing and deubgging. QuickCheck can be used even on combinations of Haskell and C code, as demonstrated by experience with the Xmonad window manager.
It's worth noting that around 1990 Andrew Tolmach built a very nice time-travel debugger for Standard ML of New Jersey, but that it was not considered worth maintaining. It's also worth noting that at one point the OCaml debugger (also a time-travel debugger) worked only on bytecode, which was inconvneient, and refused to violate abstraction barriers, which made it useless. This was around release 3.07 or so; perhaps things have improved.
Also in the early 1990s, Henrik Nilsson built an interesting debugger for Haskell, but mostly what it did was prevent the debugger from accidentally changing the evaluation behavior of the program. This was interesting, but only to lavzy-evaluation weenies.
As someone who has built or worked on large applications in all three of these languages, I find the state of play depressing.
The main tools we use at work (a Haskell shop) are:
My current job is to implement new features and support a large system implemented in ocaml and C#. Most of the "logic" is implemented in caml and the GUI and data access is in C#. The debugging techniques are pretty much as you describe lots of logging and assert to work out what's gone wrong.
Additionally we have a large number of unit tests, which are just caml scripts for testing the logic and help to spot any regression errors.
We also use continuous integration to check the build and run nightly test scripts, including some automated testing of the GUI though our "automation" style scripting interface.
I quite often use the C# debugger for debugging the C# portion of the application, the ocaml debugger does yet work under windows so we don't use it. Although we hope one day we may fix this but it isn't top of our priority list. I have occasionally used windbg to investigate managed and unmanaged memory problems, though this turned out to be caused by a third party component implemented in C#.
So overall, nothing out of the ordinary but it seems to work okay, we don't see too many production problems.
Thanks, Rob
F# has Visual Studio integration, so you can attach the debugger to your program and set breakpoints, watches, etc, just like with any other .NET language.
However, I prefer to avoid debugging as much as possible, by writing short functions that I can unit-test individually.
A couple of years ago when I did this I had to use a combination of printf debugging and QuickCheck. These days I would also use the ghci built-in debugger.
The biggest headache was actually laziness causing space-time leaks. There still doesn't seem to be a good answer to these: just do lots of profiling and keep trying to figure it out.
OCaml and F# both have excellent debuggers. OCaml's is time reversible. F#'s has excellent IDE and multithreading support.
I try to keep my fingers on home row as much as possible.
Typing all the parentheses makes me move away from there a fair bit.
I use Emacs; the parentheses themselves are no issue, I'm comfortable with them. And I don't like modes that type them for me automatically.
I've thought about remapping the square brackets to parentheses and vice versa. Is this a good idea? What does everyone else do?
I would personally recommend the lethal combo of Emacs, SLIME & paredit.el Paredit allows you to pseudo-semantically edit the LISP code at sexp level, and that makes the parentheses disappear almost completely. You can move around sexps as if they are simple words and even mutate them with just a couple of key-strokes. There is also a minor mode called Redshank which works in conjunction with Paredit and that provides more power.
Consider simple these examples (| is the position of the cursor):
(foo bar (baz| quux) zot) + C-(=> (foo (bar baz| quux) zot)
(foo (bar |baz) quux zot) + C-) => (foo (bar |baz quux) zot)
(foo (bar baz |quux) zot) + C-{ => (foo bar (baz |quux) zot)
(foo (bar |baz quux) zot) + C-} => (foo (bar |baz) quux zot)
I have done some serious Common Lisp programming in my time, and paredit has proved to be invaluable to me. I can't even think of writing non-trivial LISP code without my toolbox. And after all that's the way it should be; you should never have to count or match your parentheses... once you master Paredit, the parentheses will just disappear from in front of your eyes.
Remapping the [] to () will help, but you will stop caring much after you start using Paredit.
Feel free to use the LISP specific portions from my dot-emacs.
With many non-US keyboard layouts, typing square brackets or braces is even more cumbersome than typing parentheses, anyway, which makes programming in most languages very strainful, so consider yourself lucky. ;)
As for me, I use a programmer-friendly non-standard keyboard layout that lets me type parentheses via [Super]-j and [Super]-k.
I have foot pedals. LeftFoot = open paren, RightFoot = close paren.
Well, I don't, but I don't use Lisp. It doesn't seem like a bad idea, though.
Could you imagine a variation on Lisp that used indentation instead of parens? (taking a page from the Python spec)
I take my fingers off the home keys....
I tried remapping in Emacs, but it creates new problems: say you're editing in a terminal window through ssh and you paste a snippet into the window; then parens and brackets get swapped in your pasting, not just your typing. If you try this, remap at a lower level in your system, like xmodmap.
(Of course, the obvious other problem is using other computers without your remapping. That was a nuisance too, though bearable.)
I remapped [] to () with xmodmap and like it. It was a bit weird getting used to writing code in languages that use [], but like any change, you get used to it. Having unshifted parens in Lisp is nicer than not having unshifted brackets in other languages, so it works out.
Anyway, here is the necessary xmodmap incantation for my US keyboard:
!! swap () and []
keycode 18 = 9 bracketleft
keycode 19 = 0 bracketright
keycode 34 = parenleft braceleft
keycode 35 = parenright braceright
I have to take my fingers off the home row to reach all the other shift-number operators, so I never thought about it much.
And once you type a left-parens, electric-parens give you the right.
"... so many parenethesis"
The first thing I did was bind the '(' key to the sequence '('+')'+right(), so my parenthesis auto balance, leaving half as many left to type when writing new code.
You also want a convenient way to navigate out one paren -- bind C-] to the sequence search(')')+right(). Authoring becomes shorter now, as you don't need to take hands off the home position -- just type C-] every time you complete an S-expr.
Next thing I did was bind a key to a subroutine that pushes an existing item onto the current list ... so if // is the cursor position, then this command will transform:
(if (< //) (+ x 1)
(x)
(y))
to
(if (< (+ x 1) //)
(x)
(y))
Effectively pushing one item from the right into the current list -- very useful for editing existing code. The sequence '(', '<', C-S-], Space, '2' adds "compare less than 2" to an existing expression. Combined with C-], this lets you build new expressions very quickly from existing ones.
@jamesnvc, I didn't think about binding () to [] keys... I'll have to try that, thx!
If you use the parentheses more than the square brackets, by all means, remap away. I don't see how it could pose any more problems than, say, a lefty swapping her mouse buttons.
When I'm writing code, I generally spend much more time thinking and reading my code, than I do typing it. I've tried a couple of times in the past to switch to the Dvorak keyboard layout, but I lack obvious motivation because I can type much faster than I can think. Programming language syntax is a similar issue - as long as I can type code without leaving the keyboard (ie. using the mouse would be bad), I'm happy.
Mostly, I just type them, but occasionally, I use M-(and M-) (especially when I am adding a LET binding "late in the stage"), to enclose the relevant nnumber of expressions.
I also changed my (dvorak) keyboard layout (via xmodmap) to switch the brackets ("[]") and parens, in conjunction with paredit-mode
(which does indeed take some getting used to).
I use paredit and pair-mode packages but, for fast parenthesis typing I use electric-dot-and-dash to replace a double period in a () on a 5 ms delay (if I type slowly I get two dots then). It's a wonderful package (I hacked a bit for my personal preference; as I type with Dvorak keyboard, I replaced the dash key by a slash (// is not so common in lisp)).
To avoid the mess in parens, I add a package named 'highlight-parentheses to my tool set, and for maximum efficiency on sexp grabbings or text navigation in general, I also use vimpulse (as I am a Vim addict).
DrScheme has the keystrokes for parens and square braces flipped by default. It also has a feature where it magically guesses which one of the two you meant, so you rarely reach for shift-9.
Quack has a similar feature to that of DrScheme.
DivaScheme (my editor), is something completely different. It edits at the sexp level, so that the parens are no longer in the way.
Rebind capslock to "(" and have the editor autoinsert ")" for you.
(This also helps for other languages with a lot of brackets, for instance HTML...)
What is a good Scheme IDE for Windows? OK, I'll admit it; I'm not at RMS's level, and don't want to use Emacs or any character-based interface -- I want a graphic IDE with colorization, a REPL, and usable, in-line help for a specific, well-documented dialect of Scheme. I have searched around and PLT Scheme/DrScheme seems the best, but even that does not look too sophisticated.
DrScheme is the best Scheme IDE I have found. It has a JIT compiler, can build stand-alone executables or run in the traditional Scheme REPL, has smart syntax editing , as well as other traditional IDE features like Menu bars to change features. Running/stopping your program is as easy as clicking 'Run'/'Stop'. It also includes a macro-expander (if you're writing macros) as well as a debugger. It's Help menu includes both DrScheme-specific documentation, as well as various Scheme specifications (e.g., R5RS and R6RS).
If there is something you want in a Scheme IDE that is not in DrScheme already, I'm sure the developers would be interested in hearing from you.
I think you are done already. DrScheme is the most popular Scheme IDE.
Scheme is a bit of niche language, so do not be surprised not to find the kind of super-slick IDE support that is expected by Java/VisualBasic WIMP addicts.
Patronizing? Well, yes.
PLT Scheme is an excellenet product well worth taking a look at. It's got all the features you're asking for
I've been playing with Xacc.Ide and Iron Scheme and found they were pretty good although they felt not finished in some places. They're good enough for trying out scheme, I'm not sure if I'd use them for writing commercial software though. I've seen the author of both of them hang around here so maybe he can tell more..
As far as I know (I used DrScheme for a few months before switching to Emacs), DrScheme has many IDE-like features, but they are presented in a simplified interface because of its educational focus. Do some digging and I think you'll be happy what you find.
Also, I can't resist, since I do use Emacs---an OS specific install of emacs is hardly ever character based.
I think what you want actually is Emacs. Let's see:
I just found out the scheme plugin for eclipse, I haven't try it yet. It looks pretty nice. http://sourceforge.net/apps/wordpress/schemeway/the-schemescript-plugin/features/ and its git repository https://github.com/schemeway/SchemeScript
Hey, I have just started to study computer sciences at the university where they teach us programming in scheme. Since i have learned c++ for the last 6 years, scheme appears a little odd to me. But they tell me you can write any program you can write in C or Java with it. Is anybody really using this language?
Not a lot of people use it that I know, but it is definitely worth a peek (if even just to try programming in another paradigm, so that you learn to think differently). You're lucky to be able to take a class that uses Scheme, as most universities these days now teach Java. Here's a good link if you want to see some lectures from MIT or work on sample problems etc.
MIT Open Courseware - Structure and Interpretation Of Computer Programs
There's an accompanying book available on-line for free as well (Structure and Interpretation of Computer Programs).
UPDATE:
For those interested in a language that is similar to scheme that makes use of the JVM and can access Java libraries (since lots of universities use Java), check out Clojure. Maybe this will become the new language of choice for computer science introduction (we can all hope!).
Square USA used it to make the movie Final Fantasy.
Here's a paper they published on it: Gluing Things Together - Scheme in the Real-time CG Content Production.
From that paper:
At SIGGRAPH 2000 and 2001, we, Square USA R&D team showed real-time rendering of scenes from full computer-generated movie ``Final Fantasy: The Spirits Within''.
[...]
We found it tremendous help to have an embedded Scheme interpreter in real-time rendering engine.
Scheme will make you think differently about programming. Just try be open-minded!
"Is anybody really using this language?"
Paul Graham, famously.
I've worked on a project with scheme code in production, it can be pretty cool stuff. Scheme had this cool feature of dynamically recompiling to self-optimize execution. I think it's like one step away from sky-net.
Beyond personal experience, the closest thing you'll get to an objective guess is the TIOBE index, which currently ranks LISP/Scheme 21st with 0.470% market share. TIOBE uses search engine results to create the list. Obviously, you'll want to take the list (and any other guess at Scheme usage) with a grain of salt.
Shameless promotion: check out PLT Scheme. They've created a nice community, offer their IDE for many platforms, and give you a nice library selection out-of-the-box.
Here's an article describing PLT Scheme in a commercial app: http://www.untyped.com/downloads/icfp068-welsh.pdf.
JavaScript is remarkably similar to Scheme in many ways (though it is missing continuations and the advanced numerical system of Scheme).
From "ECMAScript Language Overview" (PDF). 2007-10-23. pp. 4. Retrieved 2009-05-03.
ES3 is a simple, highly dynamic, object-based language that takes its major ideas from the languages Self and Scheme. The programming style is a mixture of object-based and functional programming: The primary abstraction mechanisms in ES3 are lexically scoped higher-order functions and mutable objects ...
I used it in college, but I haven't used it much since.
If you're shaky on recursion at all, I highly recommend learning Scheme or Lisp. You'll learn to think recursively about all sorts of things. Is recursion always the right way to go? Of course not. But it's a useful tool to have in the toolbox.
I always encourage developers to learn new languages. The more languages you learn and become proficient with, the more abstractly you'll think about problems. The less you're tied to a specific language, the more likely you are to choose the language which best fits your problem.
I'm currently working through the SICP lectures that Abelson and Sussman gave at Hewlett-Packard in 1986 and the Cal-Berkeley CS61A podcasts given by Brian Harvey (taught from the same book) and following along in Scheme, and the experience is opening up whole new ways of thinking for me. To anyone who, like me, doesn't have any formal CS higher-education, I highly recommend it...
All languages can be used to write anything, with enough effort :)
However, Scheme's pretty cool - knowing Scheme tends to influence your programming in other languages, in my experience.
Scheme macros are extremely powerful, and call-with-current-continuation a mindwarping function.
The classic test is Structure and Interpretation of Computer Programs ("SICP"). Worth a read.
Clojure is a Scheme/Lisp like language that works in the JVM and is really good for parallel processing (supposedly). The great thing about using Clojure is that you get access to the entire Java API, and any other Java libraries.
Clojure is getting pretty popular with language geeks, along with Scala.
Absolutely. Scheme is good for a number of different classes of problems. Jim Blandy is working on a version of Scheme called Minor that integrates a lot closer with native systems and is meant to be performant.
I understand that LilyPond uses Guile for extensibility, although I don't know that I'd hold LilyPond as the ideal shining example of software as it seriously wounded my OS X installation...
I recently heard on the stackoverflow podcast that Reddit was originally written in LISP!
I am playing with IronScheme these days, but don't know anyone who uses Scheme for actual work.
There are quite a few scheme implementation for Java platform, they are used for scripting and prototyping of Java applications. There exists continuation-based web framework for J2EE in scheme, called SISCWeb.
Guile scheme is used as scripting language in some GNU apps - GnuCash for example is mostly written in Scheme.
Also TinyScheme is used as scripting language for GIMP and some variations of it are used in embedded systems.
Yes! Scheme is quite interesting. I learned it at my first year at the University of Waterloo. It is a little different at first, especially if you come from an OOP/imperative background.
It does a lot of nice things for you, and the functional paradigm is definitely one you should explore, if for nothing but gaining a different perspective.
It is also quite useful, for example, I just made a compiler for a super simplified version of C, and I couldn't imagine doing it without a functional language (:
Jazz Scheme is an open source scheme environment built on Gambit Scheme and it seems to aggressively promote industrial uses, check it out:
They report new uses in their news:
According to this page, Scheme is (or was) in use at: DEC, TI, Tektronix, HP, and Sun.
This guy's LinkedIn CV reports using Chez Scheme at Disney.
Just googling around a little can reveal a lot. In this case, it bears out the observation that I once heard that Scheme use is pretty ubiquitous, just not very public.
Scheme is used mainly for teaching purposes. That's one reason there hasn't been a standard module system until the (controversial) RSR6 one: when writing small programs for homework it's unusual to need lots of big libraries.
Scheme started out as an experiment to add Smalltalk-like OOP to Lisp. It eventually changed the macro system, added call/cc
(and dynamic-wind
, dynamic-unwind
), and grew quite a bit.
Aside from the GNU projects using Guile as a scripting language, I don't know of any production systems using Scheme. I do know of a handful of production systems using Lisp, though (Orbitz has Lisp code in its reservation system).
I'm learning about it in my Program Language Design class, it has some neat uses. I would only use it for a problem that lends itself easily to tail recursion.
Here in Russia we develop software using plt. And it solds well ;)
I'm looking for a fast language (ie. a language that can be compiled natively to achieve performance not more than 3 or 4 times slower than C), which supports portable continuations. By this I mean a continuation that can be serialized on one computer, and deserialized on another.
I know that SISC can do this (a Scheme implementation in Java), but its slow. Ditto for Rhino (a Javascript implementation in Java).
Did you checked OCaml ? It can be compiled and should be marginally slower than C.
Scala 2.8.0 will allow continuations, and they'll be portable.
While I agree that dialects of Caml might be an excellent choice I feel I have to mention Gambit Scheme. Together with Termite, an erlang-like framework it has support for serializing continuations, sending them over the wire, and much more.
http://dynamo.iro.umontreal.ca/~gambit/wiki/index.php/Main_Page
It compiles to C-code.
Its possible to do serializable continuations in Java using Apache JavaFlow - if you do go that route then the Swing Continuations library at:
http://www.exploringexcellence.com/swingcontinuations/download.html
makes it the coding a lot more pleasant.
I have been using PLT Scheme, but it has some issues. Does anyone know of a better implementation for working through SICP?
Use DrScheme. No doubt about it.
DrScheme is an excellent starting point for all things Scheme including SICP. To look up keywords in the documentation, place the cursor on the keyword and press F1.
When you get to the wonderful chapter on Henderson's picture language, use the SICP package available from PLaneT. In DrScheme you can now see the images directly in the REPL (the read-eval-print-loop).
http://planet.plt-scheme.org/display.ss?package=sicp.plt&owner=soegaard
Use MIT Scheme.
It's recommended by the authors of SICP, and is used at MIT for the 6.001: Structure and Interpretation of Computer Programs course.
MIT/GNU Scheme, just make sure you load the SICP compatibility package (yes, they provide specific libraries to enhance guarantee the SICP exercises work).
I've just started do SICP this week.
Currently, MIT Scheme is broken in in Ubuntu Linux (9.04 "jaunty"). It might be working in the future.
DrScheme is working, and is working well. You can use soegard's package listed above or Neil Van Dyke's package, which is based on soegard's package and is available from http://www.neilvandyke.org/sicp-plt/. The nice thing about this package is that when installed, you can use Language|Choose Language.... menu item to select SICP.
PLT Scheme works pretty well, or MIT Scheme as Keparo suggested. What issues are you having with it?
I've caught the bug to learn functional programming for real. So my next self-study project is to work through the Structure and Interpretation of Computer Programs. Unfortunately, I've never learned Lisp, as I was not a CS major in college.
While SICP does not emphasize the tools for programming, doing the exercises entails picking a Lisp-like language to use. It seems like some implementation of Scheme would be the path of least resistance. On the other hand, I hear of others who have used Common Lisp and Clojure. It seems to me that Common Lisp or Clojure would be more likely to be used in production code, and therefore slightly better for my resume. BTW, I fully get the argument that learning a language is worthwhile for its own sake, but learning a language that helps my resume is still a benefit. I'm a capitalist and an academic about my learning.
If you had to self-study SICP, which language would you pick and why? Ideally, I would like to use a language that can run on the JVM. I can certainly work with a language where REPL works with bash and emacs.
ADDITION: have any of you tried reading SICP without using Scheme? If so, what was your experience like?
Use Scheme. It is one of the simplest and easiest languages in existence, and you will spend very little time learning enough of it to understand SICP. Once you understand SICP, you will see how the concepts apply in any language.
Use DrScheme. As others have said, Scheme is a simple language, and DrScheme is a great environment to use it in which has a lot of support and mediocre-to-good documentation.
Not a direct answer but I expect this information to be useful for anyone working through SICP. Be sure to have a look at the videos here:
http://swiss.csail.mit.edu/classes/6.001/abelson-sussman-lectures/
There are 20 episodes of an hour each. They were presented by Abelson and Sussman in 1986 for Hewlett Packard employees. I put them on my iPod and watched them while commuting. Fascinating.
Also, the full text of the book is available online at http://mitpress.mit.edu/sicp/
As someone who hires people, I'll tell you that having Scheme on a resume is a good thing. Having Scheme, SML, Ocaml or Haskell on your resume suggests you are a very well rounded programmer, and quite a thinker.
That said, if you are trying for functional programming, why not Haskell instead? Scheme is multiparadigm, it can be OO, Funcitonal, Streams based, or anything else under the sun. This makes it awesome to try out new programming styles and paradigms, but if your goal is strictly functional, it can be a problem. (You will end up writing non functional code and not realizing it.)
To get real value out of the book you'll have to use Scheme. Which implementation of scheme depends on your current environment:
Windows - Dr Scheme (PLT Scheme) - http://download.plt-scheme.org/ Linux - If this is a remote account - you may consider MZScheme (PLTScheme) (http://download.plt-scheme.org/) otherwise you'll want to use Dr Scheme if this is a local instance of Linux.
I think Clojure fits what you want to do just perfectly. It's much more functional than Scheme because the data structures are immutable and it can be very useful as it runs on the JVM. But, be aware that you'll end up learning Scheme anyway to be able to understand the code in the book.
I agree that you should just use Scheme. However, if you really have the itch to use Common Lisp or Clojure, I'd pick the latter. Scheme and Clojure are both Lisp-1s, so the code in the book will be more congruent between the two (except for tail calls, but if you understand how to compensate you'll be fine). Common Lisp is a Lisp-2 and will probably obscure the beauty of what SICP is trying to teach you.
The code in the book is Scheme so you'll have to read it anyways - you might as well write it. You might even like it!
Caveat: I have not read the whole book
Since the examples rely on closures and continuations, you would be better served by using a language with both of those features, otherwise you would need to implement them yourself.
For example, writing a metacircular evaluator in Scheme leverages the fact that Scheme provides closures and continuations.
Use anything but scheme.
While using something else then scheme, you will be encouraged to think more, and avoid temptation to just retype the examples. It is a good thing.
Of course, it has to be similar enough, in lisp-1 sense, so clojure and arc are good to go.
I've caught the bug to learn functional programming for real.
From what I've heard, SICP is about a lot more than just functional programming.
I hear of others who have used Common Lisp and Clojure.
You should use whatever language most motivates you, but 99% of folks working through SICP are going to use Scheme.
I used lua when I had a look at sicp
works out pretty well
I worked through (most) of it earlier this year, and used Common Lisp, simply because I didn't have Scheme available (don't ask).
As has already been noted, Scheme is a Lisp-1 language whereas Common Lisp is a Lisp-2. There are enough differences between the languages to mean that you have think carefully about translating the code in the book, so it forced me to really get to grips with the material.
I have used scheme for my self-study. The best way to learn from SICP is to do all the exercises relegiously.
I have used Gnu guile for scheme.
but learning a language that helps my resume is still a benefit.
You should try using VB6 or COBOL, then, as there is a lot of billing work out there for it.
I think Scheme would be the natural choice (since it is the "native" language of SICP)
However, since the true value of SICP comes from the concepts rather than the mechanics of the particular language, I think it would be a valuable learning exercise to attempt it in any Lisp-like language. I've personally tried some of the exercises in Clojure and they all translate pretty well.
For those interested there is an ongoing project to create a Clojure translation of SICP.
While you could use something other than Scheme, you'd be needlessly adding extra work and possibly cutting yourself off from fully understanding what the book is about. SICP was an introductory programming book. It is a stepping stone to deeper topics in computer science. Getting bogged down in 'translating' from Scheme to CL or Clojure would probably obscure the finer points. That would be a shame, because SICP is truly a gateway to understanding what programming is really about.
Learning Scheme is really straight forward (especially compared to both CL and Clojure) and, in fact, the introductory course as well as the book, assumes the student doesn't know it already. CL and Clojure carry considerable baggage relative to the task at hand.
I have experimented with Lisp (actually Scheme) and found it to be a very beautiful language that I am interested in learning more about. However, it appears that Lisp is never used in serious projects, and I haven't seen it listed as a desired skill on any job posting. I am interested in hearing from anyone who has used Lisp or seen it used in the "real world", or who knows whether it is considered a purely academic language.
Franz, Inc. provides an inexhaustive list of success stories on their website. However:
Please don't assume Lisp is only useful for Animation and Graphics, AI, Bioinformatics, B2B and E-Commerce, Data Mining, EDA/Semiconductor applications, Expert Systems, Finance, Intelligent Agents, Knowledge Management, Mechanical CAD, Modeling and Simulation, Natural Language, Optimization, Research, Risk Analysis, Scheduling, Telecom, and Web Authoring just because these are the only things they happened to list. ? Kent Pitman
ITA Software uses Common Lisp for its QPX low-fare search engine which powers sites like Orbitz, Kayak, and American and United Airlines among many others. It's also used in part for its upcoming passenger reservation system for Air Canada. Paul Graham has written a little bit about Lisp at ITA in the past.
(Disclaimer: I work there.)
Does Emacs' elisp count? That's the most "real world" use that I am familiar with (although I'm not sure that Emacs counts as "real world" either).
Paul Graham has used and written about ViaWeb that was written in LISP
Read about it here - Beating the Average
Reddit was originally written in Lisp and then later rewritten in Python. There's a good analysis of the switch and what it means for Lisp over at Finding Lisp.
as a small startup we've built up something some people call an "application server". but in fact it's just a bunch of integrated common lisp libraries for sql connectivity and web applications. some details are available at cl-dwim project page
using that we have developed and operate a web application for the hungarian government that collect data from the local governments and calculates the relevant part of the budget of the country. this is the second budget we are planning now.
it has about 4000 users, and it runs on a cluster of computers.
as of "academic language": we are playing with things like persistent continuations for business process modelling. it's some random lisp code with a few extra process-related primitives and a few constraints. it can stop at random points in the code and fall asleep (get comitted into the database) while it waits for some external event.
is it practical or academic? you decide... :)
ITA software uses a fair amount of CL.
A fairly recent open-source project that is still enjoying consistent and considerable development activity is LilyPond.
It's a music notation program that takes a easy-to-write text file as input and converts it into beautiful sheet music (pdf files). Offers all kinds of ways to fiddle with the output if you want to. It can even produce decent sounding midi files. I use it whenever I need to produce nice sheet music that other musicians will read from. I think it's better than Finale and it's free!
In the commercial category, there is also Notehead's Igor Engraver. Unfortunately, the site doesn't allow me to post a direct link to the page that talks about Lisp, so go to downloads and look at the bottom for a "Lisp" link.
There's also Naughty Dog (a computer game company) who use Lisp in their games. This article talks about that and even shows some code.
And there are many others that have been mentioned and linked to, but these are the main ones that resonate with me (being a composer/programmer/gamer/... type).
Peter Christensen has compiled a great list of (financially) successful lisp companies.
If I started up my very own major software project now, I would make my language decision based on the criteria above. Sure, I love Lisp, CLOS is awesome, real lexical scoping rocks, Lisp macros are way cool (when used as directed), and personally I really like Lisp syntax. [?] But it would take a lot, or require special circumstances, to persuade me to choose Lisp for a major software project, if I were in charge of making the choice. - Dan Weinreb
I believe Autocad has extensions that use Lisp to extend the product. See AutoLISP.
There are plenty of companies, projects, and products that use Lisp in a variety of roles ? I've done work for several of them.
There are two relevant points:
you may never know that your latest piece of consumer electronics was built with, or even programmed in, Common Lisp, or that some service you use is powered by a Lisp server. It would be incorrect to conclude that Lisp is "never used".
? and, like so many domains, those jobs never appeared on Monster.com. Just because you've never seen a job posting for it doesn't mean that there are no Lisp-required or right-tool-for-the-job opportunities out there.
Far from exhausted list in http://www.franz.com/success/all_customer_apps.lhtml
Some more recent ones:
The first three of those were written using Weblocks, a CL web framework. Wigflip and Clutu use pure Hunchentoot.
Now get coding! :)
Look up ACL2. It's a lisp based formal logic engine that has been used for a number of "real world" project like formal methods in software security and proofs of correctness for Floating point hardware.
If my plans work out, we will all be using Scheme in 5 years from now! ;p
Well, it's hardly mainstream, but I use lisp for as much of my research code as is manageable. It's by far the best language I've found for the balance of dynamism & expressiveness while still generating decent performance for numerics, etc..
I was quite impressed when I found out that the PRISM («The Prism project is a long term project to build software tools for radiation therapy planning, including artificial intelligence tools as well as manual simulation systems.») is written in Common Lisp.
At my job I am writing software that uses DICOM and I must say that writing good DICOM implementation is a hard task. In their report they describe how Common Lisp let them build a good DICOM implementation that is better (at least in some ways) than other implementation with lesser effort.
The GIMP's plug-in system is based on Scheme, I believe. I don't know if this is completely "real world", but it seems to be a practical application of Lisp, at the very least.
Google App Inventor is written in Scheme
It's a wonderful language, but it's crippled because (in my opinion as a software business owner and programmer) there are very few commercial Lisp packages, and the few that are out there demand a run-time fee (because a proper Lisp package can be used by end-users to write Lisp programs too).
I use Steel Bank Common Lisp to prototype code under Windows and Linux, and I love it -- but I would never consider shipping a product written with it. There's no easy way to set up single-click access to the programs, so that the end user will never be confronted with a Lisp prompt. There's no way to ship a compiled product so that the user can't disassemble it, make some changes to remove your name, and sell it as his own. I've seen mention of Lisp systems that both of these can be done in, but they're commercial ones where you have to pay run-time fees for each end-user of your program, which is ridiculous.
Lisp may come into its own some day (and I fervently hope that it does), but it isn't viable for most commercial software yet. The only exception is something where it's always going to be running on systems that you have complete control over, like a web server (and I've only heard of a couple companies using it even for that).
Scheme programming language is used as a scripting language by FLUENT Flow Modelling Software (computational fluid dynamics, CFD).
For the AutoCAD application AutoLISP/Visual LISP are used a lot for real projects and there is a large community of users.
Lisp attempted the jump to lightspeed in the early 80's. Before there were PCs, there were commercially produced "Lisp Machines" which superficailly look a lot like modern workstations, but which were lisp "all the way down". Lisp hardware eventually lost out to Intel (as did everything else). Lisp software eventually lost out to C/C++. There are a variety of theories why this is all this is so. http://www.andromeda.com/people/ddyer/lisp/
Algorithmic Composition Toolbox from Paul Berg: http://www.koncon.nl/downloads/ACToolbox/
My company has the software writen in scheme (PLT). The software is used to act like email firewall for the big companies.
Just adding to all the very wise comments above: look at the Corman Lisp tool and discover how to embed VERY INTELLIGENT FUNCTIONS into an embedded system!
I see a few people have already mentioned it but lisp is widely used in custom Autocad development. Autocad includes a built-in lisp interpreter. It is one of the simplest ways to extend the product and provides the ability to quickly enhance your productivity.
No compiling is required, on the user side, and 1, or more, line lisp expressions can be entered on the command line and executed immediately on the drawing. For designers and draftsman willing to take even a small step to learning the basics of lisp it can provide a huge productivity boon.
Autocad does provide a number of other ways to customize their products; ObjectARX (C++), VB, C#, etc.. The lisp interface is by far the easiest to learn and implement. And the majority of other dev environments use lisp in some fashion.
The lisp interpreter was made available in a very early version of Autocad and was called Variables and expressions. It was fairly limited but was such a success with the users that additional functionality was quickly added. A full blown visual IDE was later on (in version 2000 I think).
I would hate to guess how many millions (billions?) of lines of lisp code are available for Autocad. A google search on "autocad .lsp" returns 2.3 million hits.
Ok, enough typing, it's back to work for me, writing more lisp for my current project :)
Next version of GNU Make will be extensible with scheme. A case for real world programming :)
http://old.nabble.com/Guile-support-in-GNU-make-td33140867.html
I just realized now that Maxima, a program for symbolic algebra, is written in Common Lisp. I've been using that for quite some time and I think it's also a very good real life example.
What are the popular (ok, popular is relative) web frameworks for the various flavours of LISP?
PLT Scheme features a built-in, continuation-based web server.
What is Weblocks?
Weblocks is a continuations-based web framework written in Common Lisp.
Hunchentoot is also quite widespread
UnCommonWeb (UCW) is often mentioned http://www.common-lisp.net/project/ucw/ -- it's not REST as is in en-vogue at the moment, more like Smalltalk's SeaSide (but then again, SeaSide is quite en-vogue).
Most (perhaps all) of the well-known Common Lisp web frameworks have already been mentioned, so I'll just add some comments.
Hunchentoot is not a "web framework" in the sense that most people mean. It's an HTTP server (an extremely good one).
Drew Crampsie's "Lisp on Lines" looks extremely promising, but I'm not sure how far along it is. I've been waiting to hear an announcement.
Marco Baringer's UnCommon Web runs on many of the prominent CL implementions: Allegro CL, CMUCL, Clozure CL (formerly known as OpenMCL), GNU clisp, and SBCL. The only major one missing is LispWorks; I don't know if that means it hasn't been tested to work, or is known not to work, or what; but if it runs on all those other dialects, it's probably easy to make it run on any other.
Lisp-on-lines is a web application framework built on top of CLSQL and UCW and provides an application development model similar in many ways to Ruby on Rails. Right now it can be found at http://versions.tech.coop/lisp-on-lines/.
Common Lisp
A lot of the usual suspects (Hunchentoot, UCW, LoL) have already been mentioned. Franz makes available for Allegro Common Lisp (and ported to other Lisps):
Both are open source. I tend to use AllegroServe, factoring out utilities as I need them, but some people really like WebActions.
I used Araneida for quite some time, and I prefer its style to AllegroServe, but it hasn't been maintained since 2006.
I've searched quite extensively for a good web framework for Lisp, and I found them all to be somewhat inaccessible. The Architecture of UCW didn't seem very natural to me (I can't remember why; it's been a while since I looked into it), and KPAX isn't maintained anymore (I think).
Symbolic web looks very interesting, and I think Weblocks is the most interesting, but Weblocks isn't very well documented and can be pretty intimidating to the newcomer. SymbolicWeb was immature last time I looked, but it may have grow up some since then. The features page looks pretty good today.
There are different approaches you could take. If you want a purely lisp approach, then you could:
If you are ok with a hybrid approach, this is something I'm experimenting with at the moment: I've written a Lisp JSON-RPC backend for Qooxdoo, so I can serve up pure javascript frontends through a superfast http server like Cherokee and let Cherokee farm out connections to as many backend json-rpc servers running in Lisp as I want. Very, very scalable. I'm far from figuring out the kinks and challenges, but it was pretty straight-forward to get working. the json library makes it stupid simple to get the backend working - Qooxdoo itself is actually harder, I think (but I'm not a JS developer, really).
I'm also going to be checking out WebActions from allegro, because there's a certain allure to the availability of paid support - not to mention that Allegro may be the best CL implementation available (His Kennyness uses it :-)).
Another cool (yet far from "popular") thing to look at is SymbolicWeb -- http://groups.google.com/group/symbolicweb
Re: SymbolicWeb (and its exaggerated demise)
SymbolicWeb project page at Gitorious and SymbolicWeb article at Wikipedia. The Google Groups page is definitely dead (and unarchived?,) but the Gitorious tree shows checkins as recently as 29 April 2010. The project page also refers to "some running examples" being "occasionally available" at nostdal.org (which is unreachable as I write this, reinforcing the "occasionally" qualifier :-) .)
(Note: I'm not a SymbolicWeb user. I just tracked down the SymbolicWeb links while reading this thread.)
I do most of my development in Common Lisp, but there are some moments when I want to switch to Scheme (while reading Lisp in Small Pieces, when I want to play with continuations, or when I want to do some scripting in Gauche, for example). In such situations, my main source of discomfort is that I don't have Slime (yes, you may call me an addict).
So, what is Scheme's closest counterpart to Slime? Specifically, I am most interested in:
let
at once).(map |)
(cursor position is indicated by |
)), I'd like to see (map predicate . lists)
in the minibufferI have ordered the features by descending importance.
My Scheme implementations of choice are:
so it would be great if it worked at least with them.
Thanks in advance.
SLIME's contrib directory seems to have SWANK implementations for MIT Scheme and Kawa.
You also might consider Scheme Complete:
http://www.emacswiki.org/cgi-bin/wiki/SchemeComplete
It basically provides tab-completion.
Well... I would say Slime for scheme is the closest thing to Slime for Scheme ;)
A commentator has said: "DrScheme IDE has emacs key bindings" and it is a highly regarded IDE with many of the features you explicitly listed.
Additionally, scheme-mode for Emacs provides some of the features from SLIME - the integrated REPL, the ability to send forms to that REPL and to load entire files. As far as I know, there is no equivalent, in general for the scheme's you've listed, for things like connecting to a running image remotely (versus a scheme repl in an Emacs buffer), or the debugger integration.
I haven't used it, but you might try Quack with mzscheme
.
SLIME is pretty hard to beat though. There's a lot of niceness going on in the SWANK end of it.
For my work with mzscheme i usually use cmuscheme + quack, that provide almost what i need during development.
Bigloo comes with very powerful bee-mode.
And for gauche you can use GCA package that provides names completion, display of function's descriptions & inserting of code templates
Update: I published article about Scheme + Emacs integration on my site
You can use Chicken Scheme with slime by using swank-chicken.
I'd suggest taking a look at geiser mode, but it only supports Racket and Guile right now which I don't see on your list.
Which would you recommend learning, CL or Scheme? What are the pros and cons of each, compared to each other?
From a section of the introduction of Practical Common Lisp (great resource to learn common lisp, by the way):
If you've used Lisp in the past, you may have ideas about what "Lisp" is that have little to do with Common Lisp. While Common Lisp supplanted most of the dialects it's descended from, it isn't the only remaining Lisp dialect, and depending on where and when you were exposed to Lisp, you may very well have learned one of these other dialects.
Other than Common Lisp, the one general-purpose Lisp dialect that still has an active user community is Scheme. Common Lisp borrowed a few important features from Scheme but never intended to replace it.
Originally designed at M.I.T., where it was quickly put to use as a teaching language for undergraduate computer science courses, Scheme has always been aimed at a different language niche than Common Lisp. In particular, Scheme's designers have focused on keeping the core language as small and as simple as possible. This has obvious benefits for a teaching language and also for programming language researchers who like to be able to formally prove things about languages.
It also has the benefit of making it relatively easy to understand the whole language as specified in the standard. But, it does so at the cost of omitting many useful features that are standardized in Common Lisp. Individual Scheme implementations may provide these features in implementation-specific ways, but their omission from the standard makes it harder to write portable Scheme code than to write portable Common Lisp code.
Scheme also emphasizes a functional programming style and the use of recursion much more than Common Lisp does. If you studied Lisp in college and came away with the impression that it was only an academic language with no real-world application, chances are you learned Scheme. This isn't to say that's a particularly fair characterization of Scheme, but it's even less applicable to Common Lisp, which was expressly designed to be a real-world engineering language rather than a theoretically "pure" language.
If you've learned Scheme, you should also be aware that a number of subtle differences between Scheme and Common Lisp may trip you up. These differences are also the basis for several perennial religious wars between the hotheads in the Common Lisp and Scheme communities. I'll try to point out some of the more important differences as we go along.
Two other Lisp dialects still in widespread use are Elisp, the extension language for the Emacs editor, and Autolisp, the extension language for Autodesk's AutoCAD computer-aided design tool. Although it's possible more lines of Elisp and Autolisp have been written than of any other dialect of Lisp, neither can be used outside their host application, and both are quite old-fashioned Lisps compared to either Scheme or Common Lisp. If you've used one of these dialects, prepare to hop in the Lisp time machine and jump forward several decades.
Scheme has one big advantage: SICP lectures that are available on the internet. It's a great fun to follow them with an interpreter onboard.
The advantage of Common Lisp is more-or-less standard set of common libraries.
So, if you want to do real-world development, consider C.Lisp. If you want learning and fun, use Scheme.
Neither: Clojure. Honestly after many years of banging my head with both Scheme and Common Lisp endless list of implementations and idiosyncrasies, I'm happy hacking away on Clojure.
I know this not really an answer to your question, but as your asking for opinion, I'm giving you mine (and I wished someone told me this when before).
I've spent weeks wrestling with this same question having been inspired by Paul Graham to learn 'Lisp'.
I eventually gave up on CL because I couldn't find a free implementation that worked well enough on Windows that could also generate a small standalone executable.
I settled on Scheme, using Gambit-C and Eclipse with Schemescript as the IDE. This worked extremely well for me because you can prototype in the interpreter and then every so often hit the make button and out pops a credibly small self-contained executable.
It is also incredibly easy to interface to C so you are never short of a library to do a task. For example I need a HTTP client that supports SSL - I simply wrapped a couple of the wininet functions and I was in business.
Think of it more as a familiar C development environment with the advantage that you can glue all the low level code together in a more productive Lisp type language.
As a Schemer, I find it difficult to work with Common Lisp when I have to. Most of it stems from having to separate the function namespace and the variable namespace. This leads to two separate ways of defining stuff and two different let-like syntaxes for temporary definition. There's also the fact that Common Lisp doesn't provide explicit access to the continuation and therefore if you want to do something that involves saving and restoring state you have to keep track of it manually.
There is one good feature about Common Lisp - the macro system is much easier to use than Scheme's (which I have yet to fully master). Paul Graham is working on a dialect of Lisp called Arc that combines the unity of Scheme and the ease of the CL macro system. It's a rough draft right now, but it does have significant promise.
Scheme. The core language is small. The "define" operator makes defining functions and variables very clean. It supports tail recursion. You can build object oriented programs in Scheme. One of the best computer science textbooks ever written is "Structure and Interpretation of Computer Programs" by Abelson and Sussman. References to this book have appeared quite a number of times in answers to various Stackoverflow questions.
It depends on what you want to do with the language.
Scheme is very much the standard for education and research. If you want to try implementing new type systems for your PhD thesis, Scheme is probably the way to go because it's easier to analyse and reason about.
For real applications, I strongly recommend Common Lisp, however. There is something to be said for choosing PLT Scheme, but that locks you into a single implementation (which may or may not be a problem for you).
Common Lisp is an industrial-strength standard with various free and commercial implementations that produce fast and robust code. The commercial implementations come with their own IDEs; on the other hand, SLIME is too awesome to neglect looking at it. Also, its culture encourages programming in a dynamic and interactive way (this is the most important thing that I personally miss whenever I look at Scheme) and mixing all programming styles that you can name to your heart's content (while Schemers tend to frown upon imperative style).
Finally, cliki.net and cl-user.net may not be the best structured websites on the planet, but there are much more portable Common Lisp libraries there than I could ever find for any Scheme implementation.
For learning a Lisp, scheme resources are unsurpassed, and the PLT IDE provides excellent suport for learning. Guessing you are already an experienced programmer in another language, I'd suggest starting with The Little Schemer and TSPL, on PLT-Scheme.
Of course that doesn't answer the question.
The answer to your question is it depends on what you want to do?, and the answer would probably specify an implementation.
Do you want to do AI, write a DSL, write fast code or target a VM?
[The broad answers are probably, Lisp, Scheme, SBCL, JScheme or Kawa.]
Scheme. Its a smaller language, but still teaches you the good things you can take away from a Lisp-like language.
Quite frankly, you will likely not be using Lisp or Scheme if you make a career in software development. There is not much work being done in that language, Paul Graham notwithstanding. Learning the Lisp mindset makes you a better developer, but learning the nuances of Common Lisp and the CLOS is probably not a good use of your time.
I recommend Scheme. As stated before, the LISP-derived families aren't used much in the wild. The value of learning a LISP-derived language is developing new ways of thinking, which Scheme does in a very plain, straightforward way with great documentation and software available.
And I'll plug Dr. Scheme while I'm at it. :)
Disclaimer: Python/Scheme programmer who uses Dr. Scheme
I know both, and I LOVE both. Mr. Fernández makes a point, Lisp is more a way of thinking than it is a language, it has MANY dialects, each one worthy of deep affection. If you're new to this Lisp thing, then learn Scheme with the SICP and no other text (although you'll learn Scheme with something else, the SCIP at least makes it fun, and it even has a fun colloquial name: "The Wizard Book"). Common Lisp is worth knowing since it's just so darned common (compared to other hard Lisps in my experience); it can patch into C-compiled libraries, and plays well with most other languages. The funny thing with Lisp: learn one dialect of Lisp, and you can figure out the other dialects in short-order. However, although Lisp coding isn't as common as Java or Python (guess which one I like more), it's gaining popularity as of late. Also know that ALGOL and LISP were conceived in 1958, and their dialects (Scheme, Common Lisp, and for ALGOL, C) are still in use; Lisp has staying-power, so it is as relevant as C, although useful for different purposes.
I learned both of these in college and have to say they are strange languages to learn, I am assuming you are concentrating on AI?
I would recommend Lisp out of these 2 choices. It is much more common as an actual useful language in the filed of AI, whereas Scheme is more looked upon as a learning language in my experience. Both offer the same strange programming approach (like comparing Java and C#). Lisp also has a larger community behind it.
The pros and cons of both of them are almost the same, so I make my recommendation more on experience. The nice thing is, if you learn one, you will be able to pick up the other in no time.
Do yourself a favor, and get a good editor with bracket-matching... those parentheses get out of control :)
I've just started one of my courses, as classes just began 2 weeks ago, and we are learning Scheme right now in one for I assume some reason later on, but so far from what he is teaching is basically how to write in scheme. As I sit here trying to stay awake I'm just trying to grasp why I would want to know this, and why anyone uses it. What does it excel at? Next week I plan to ask him, whats the goal to learn here other than just how to write stuff in scheme.
It's a functional programming language and will do well broaden your experience.
Even if you don't use it in the real world doesn't mean it doesn't have any value. It will help you master things like recursion and help to force you to think of problems in different ways than you normally would.
I wish my school forced us to learn a functional programming language.
Languages like LISP (and the very closely related Scheme) are to programming what Latin is to English.
You may never speak Latin a day in your normal life again after taking a course, but simply learning a language like Latin will improve your ability to use English.
The same is true for Scheme.
I see all these people here saying that while they would never actually use Scheme again it's nevertheless been a worthwhile language to learn because it forces a certain way of thinking. While this can be true, I would hope that you would learn Scheme because you eventually will find it useful and not simply as an exercise in learning.
Though it's not blazingly fast like a compiled language, nor is it particularly useful at serving websites or parsing text, I've found that Scheme (and other lisps by extension) has no parallel when it comes to simplicity, elegance, and powerful functional manipulation of complex data structures. To be honest, I think in Scheme. It's the language I solve problems in. Don't give up on or merely tolerate Scheme - give it a chance and it won't disappoint you.
By the way, the best IDE for Scheme is DrScheme, and it contains language extensions to do anything you can do in another language, and if you find something it can't you can just use the C FFI and write it yourself.
I would suggest to keep an open mind when learning. Most of the time in school we don't fully comprehend what/why we are learning a particular subject. But as I've experienced about a million times in life, it turns out to be very useful and at the very least being aware of it helps you. Scheme, believe it or not, will make you a better programmer.
Some people say Scheme's greatest strength is as a teaching language. While it is very beneficial to learn functional programming (it's an entirely new way of thinking) another benefit in learning scheme is that it is also "pure". Sure it can't do a ton of stuff like java, but that's also what's great about it, it's a language made entirely of parentheses, alphanumeric characters, and a mere handful other punctuations.
In my intro course, we are taught Java, and I see lots of my friends struggling with 'public static void main' even though that's not the point of the program and how the profs have no choice but to 'handwave' it until they're more advanced. You don't see that in Scheme.
If you really want to learn what Scheme can do in a piece of cake that is really hard to implement in languages like Java, I suggest looking at this: http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3
This is probably the best book written on Scheme.
My problem was when learning this we learned clisp right along with it. I couldn't keep the two strait to save my life.
What I did learn from them though was how to write better c and java code. This is simply because of the different programming style I learned. I have adapted more of the functional style into some of my programming and It has helped me in some cases.
I would never want to program in scheme or lisp again if I didn't have to, but I am glad that I at least did a little in them just to learn the different way to program.
Scheme was used by NASA to program some of the Mars rovers. It's usage in the marketplace is pretty specific, but like I'm sure your teachers are telling you, the things you learn in Scheme will carry over to programming in general.
Try not to get caught up on details like the parenthesis, and car/cdr. Most of what you're learning translates to other languages in one way or another. Don't worry about whether or not you can take Scheme to the market place, chances are you'll be learning some other more marketable languages in other classes. What you are learning here is more important.
If you are learning scheme, you can learn all about how object systems are implemented (hint: an object system isn't always about a type that has methods and instance variables bound to it...). While this kind of knowledge won't help in 95% of your daily work, for 5% of your work you will depend on that knowledge.
Additionally, you can learn about completely different styles of computation, such as streams/lazy evaluation, or even logic programming. You could also learn more about how computer programs in general are interpreted; from the basics in how program code is evaluated, to more deeper aspects like making your own interpreter and compiler). Knowing this kind of information is what separates a good programmer from a great programmer.
Scheme is not really a Functional language, it's more method agnostic then that. Perhaps more to the point, Scheme is an excellent language to choose if you want to explore with different methods of computation. As an example, a highly parallel functional language "Termite" was built on top of Scheme.
In short, the point in learning scheme is so that you can learn the fundamentals of programming.
If you need some help in making programming in scheme more enjoyable, don't be afraid to ask. A lot of programmers get hung up on (for instance) the parenthesis, when there are perfectly great ways to work with scheme source code that makes parenthesis something to cherish, rather then hate. As an example, emacs with paredit-mode,some kind of scheme interaction mode and highlight-parenthesis-mode is pretty awesome.
I've been making my way through The Little Schemer and was wondering what environment/ide/interpreter would be best to use in order to test any of the Scheme code I jot down for myself.
Thanks
Racket (formerly Dr Scheme) has a nice editor, several different Scheme dialects, an attempt at visual debugging, lots of libraries, and can run on most platforms. It even has some modes specifically geared around learning the language.
PLT Scheme (DrScheme) is one of the best IDEs out there, especially for Scheme. The package you get when downloading it contains all you need for developing Scheme code - libraries, documentation, examples, and so on. Highly recommended.
If you just want to test your scheme code, I would recommend PLT Scheme. It offers a very complete environment, with debugger, help, etc., and works on most platforms.
But if you also want to get an idea of how the interpreter behind the scenes works, and have Visual Studio, I would recommend Tachy. It is a very lightweight scheme interpreter written in c#. It allows you to debug just your scheme code, or also step through the c# interpreter behind the scenes to see what is going on.
Just for the record I have to mention IronScheme.
IronScheme will aim to be a R6RS conforming Scheme implementation based on the Microsoft DLR.
Version 1.0 Beta 1 was just released. I think this should be good implementation for someone that is already using .NET framework.
EDIT
Current version is 1.0 RC 1 from Oct 23 2009
I used MIT Scheme.
I've used PLT as mentioned in some of the other posts and it works quite nicely. One that I have read about but have not used is Allegro Common LISP Express. I read a stellar review about their database app called Allegro Cache and found that they are heavy into LISP. Like I said, I don't know if it's any good, but it might be worth a try.
It doesn't matter, as long as you subscribe to the mailing list(wiki/irc/online-community-site) for the associated community. It's probably worth taking a look at the list description and archives to be sure you are in the right one.
Most of these are friendly and welcoming to newcomers, so don't be afraid to ask.
It's also worth searching the archives of their mailing list(or FAQ or whatever they use) when you have a question - just in case it is a frequent question.
Good Luck!
LispMe works on a Palm Pilot, take it anywhere, and scheme on the go. GREAT way to learn scheme.
Google for the book's authors (Daniel Friedman and Matthias Felleisen). See whether either of them is involved with a popular, free, existing Scheme implementation.
I'm trying to grasp the concept of continuations and I found several small teaching examples like this one from the Wikipedia article:
(define the-continuation #f)
(define (test)
(let ((i 0))
; call/cc calls its first function argument, passing
; a continuation variable representing this point in
; the program as the argument to that function.
;
; In this case, the function argument assigns that
; continuation to the variable the-continuation.
;
(call/cc (lambda (k) (set! the-continuation k)))
;
; The next time the-continuation is called, we start here.
(set! i (+ i 1))
i))
I understand what this little function does, but I can't see any obvious application of it. While I don't expect to use continuations all over my code anytime soon, I wish I knew a few cases where they can be appropriate.
So I'm looking for more explicitely usefull code samples of what continuations can offer me as a programmer.
Cheers!
In Algo & Data II we used these all the times to "exit" or "return" from a (long) function
for example the BFS algorthm to traverse trees with was implemented like this:
(define (BFS graph root-discovered node-discovered edge-discovered edge-bumped . nodes)
(define visited (make-vector (graph.order graph) #f))
(define q (queue.new))
(define exit ())
(define (BFS-tree node)
(if (node-discovered node)
(exit node))
(graph.map-edges
graph
node
(lambda (node2)
(cond ((not (vector-ref visited node2))
(when (edge-discovered node node2)
(vector-set! visited node2 #t)
(queue.enqueue! q node2)))
(else
(edge-bumped node node2)))))
(if (not (queue.empty? q))
(BFS-tree (queue.serve! q))))
(call-with-current-continuation
(lambda (my-future)
(set! exit my-future)
(cond ((null? nodes)
(graph.map-nodes
graph
(lambda (node)
(when (not (vector-ref visited node))
(vector-set! visited node #t)
(root-discovered node)
(BFS-tree node)))))
(else
(let loop-nodes
((node-list (car nodes)))
(vector-set! visited (car node-list) #t)
(root-discovered (car node-list))
(BFS-tree (car node-list))
(if (not (null? (cdr node-list)))
(loop-nodes (cdr node-list)))))))))
As you can see the algorithm will exit when the node-discovered function returns true:
(if (node-discovered node)
(exit node))
the function will also give a "return value": 'node'
why the function exits, is because of this statement:
(call-with-current-continuation
(lambda (my-future)
(set! exit my-future)
when we use exit, it will go back to the state before the execution, emptying the call-stack and return the value you gave it.
So basically, call-cc is used (here) to jump out of a recursive function, instead of waiting for the entire recursion to end by itself (which can be quite expensive when doing lots of computational work)
another smaller example doing the same with call-cc:
(define (connected? g node1 node2)
(define visited (make-vector (graph.order g) #f))
(define return ())
(define (connected-rec x y)
(if (eq? x y)
(return #t))
(vector-set! visited x #t)
(graph.map-edges g
x
(lambda (t)
(if (not (vector-ref visited t))
(connected-rec t y)))))
(call-with-current-continuation
(lambda (future)
(set! return future)
(connected-rec node1 node2)
(return #f))))
Seaside:
I love "Call with Current Continuation Patterns". It contains examples of real-life uses of continuations for exiting loops, escaping (and reentring) recursion, doing multitasking or doing non-blind backtracking, among others.
It's very well explained too.
@Pat
Seaside
Yes, Seaside is a great example. I browsed its code quickly and found this message illustrating passing control between components in a seemingly statefull way accross the Web.
WAComponent >> call: aComponent
"Pass control from the receiver to aComponent. The receiver will be
temporarily replaced with aComponent. Code can return from here later
on by sending #answer: to aComponent."
^ AnswerContinuation currentDo: [:cc |
self show: aComponent onAnswer: cc.
WARenderNotification raiseSignal]
So nice!
I built my own unit testing software. Before executing the test, I store the continuation before executing the test, and then on failure, I (optionally) tell the scheme interpreter to drop into debug mode, and re-invoke the continuation. This way I can step through the problematic code really easily.
If your continuations are serializable, you can also store then on application failure, and then re-invoke them to get detailed information about variable values, stack traces, etc.
Continuations are used by some web servers and web frameworks to store session information. A continuation object is created for each session and then used by each request within the session.
I came accross an implementation of the amb
operator in this post from http://www.randomhacks.net, using continuations.
Here's what the amb
opeerator does:
amb will (appear to) choose values
for x and y that prevent future
trouble.
x = amb 1, 2, 3
y = amb 4, 5, 6
Ooops! If x*y isn't 8, amb would
get angry. You wouldn't like
amb when it's angry.
amb if x*y != 8
Sure enough, x is 2 and y is 4.
puts x, y
And here's the post's implementation:
A list of places we can "rewind" to
if we encounter amb with no
arguments.
$backtrack_points = []
Rewind to our most recent backtrack
point.
def backtrack
if $backtrack_points.empty?
raise "Can't backtrack"
else
$backtrack_points.pop.call
end
end
Recursive implementation of the
amb operator.
def amb *choices
Fail if we have no arguments.
backtrack if choices.empty?
callcc {|cc|
cc contains the "current
continuation". When called,
it will make the program
rewind to the end of this block.
$backtrack_points.push cc
Return our first argument.
return choices[0]
}
We only get here if we backtrack
using the stored value of cc,
above. We call amb recursively
with the arguments we didn't use.
amb *choices[1...choices.length]
end
Backtracking beyond a call to cut
is strictly forbidden.
def cut
$backtrack_points = []
end
I like amb
!
Continuations can be used in "real-life" examples whenever the program flow is not linear, or not even pre-determined. A familiar situation is web applications.
Continuations are a good alternative to thread-per-request in server programming (including web application frontends.
In this model, instead of launching a new (heavy) thread every time a request comes in, you just start some work in a function. Then, when you are ready to block on I/O (i.e. reading from the database), you pass a continuation into the networking response handler. When the response comes back, you execute the continuation. With this scheme, you can process lots of requests with just a few threads.
This makes the control flow more complex than using blocking threads, but under heavy load, it is more efficient (at least on today's hardware).
How about the Google Mapplets API? There are a bunch of functions (all ending in Async
) to which you pass a callback. The API function does an async request, gets it's result, then passes that result to your callback (as the "next thing to do"). Sounds a lot like continuation passing style to me.
This example shows a very simple case.
map.getZoomAsync(function(zoom) {
alert("Current zoom level is " + zoom); // this is the continuation
});
alert("This might happen before or after you see the zoom level message");
As this is Javascript there's no tail call optimization, so the stack will grow with every call into a continuation, and you'll eventually return the thread of control to the browser. All the same, I think it's a nice abstraction.
If you have to invoke an asynchronous action, and suspend execution until you get the result, you would normally either poll for the result or put the rest of your code in a callback to be executed by the asynchronous action upon completion. With continuations you don't need to do the inefficient option of polling, and you don't need to wrap up all your code to be run after the asynch event in a callback - you just pass the current state of the code as your callback - and the code is effectively "woken up" as soon as the asynch action completes.
The amb operator is a good example that allows prolog-like declarative programming.
As we speak I'm coding a piece of music composition software in Scheme (I'm a musician with next to no knowledge of the theory behind music and I'm just analysing my own pieces to see how the maths behind it works.)
Using the amb operator I can just fill in constraints which a melody must satisfy and let Scheme figure out the result.
Continuations are probably put into Scheme because of the language philosophy, Scheme is a framework enabling you to realize about any programming paradigm found in other language by defining libraries in Scheme itself. Continuations are for making up your own abstract control structures like 'return', 'break' or to enable declarative programming. Scheme is more 'generalizing' and begs that such constructs should be able to be specified by the programmer too.
Continuations can be used to implement exceptions, a debugger.
I like to study languages outside my comfort zone, but I've had a hard time finding a place to start for functional languages. I heard a lot of good things about Structure and Interpretations of Computer Programs, but when I tried to read through it a couple of years ago it just seemed to whiz over my head. I do way better with books than web sites, but when I visit the local book store the books on LISP look kind of scary.
So what's a good starting point? My goal is to be able to use a functional programming language to solve simple problems in 6 months or so, and the ability to move to more advanced topics, recognize when a functional language is the right tool for the job, and use the language to solve more problems over the course of 2-3 years. I like books that are heavy on examples but also include challenges to work through. Does such a thing exist for functional languages?
The Little Schemer teaches recursion really well, and it's fun and simple to read.
I also liked The Scheme Programming Language for a broader introduction into the language.
Try Real World Haskell. It's free online.
SICP is a great book.
This is probably my bias, but I thought ocaml was pretty easy to get into. You have the option of programming in a few different styles until you're completely comfortable. I posted a bunch of links to Haskell and Ocaml references that are books, with examples et cetera that seem right up your alley.
If you prefer Lisp, you can try to power through the 99-problems in Lisp(which you can do in any language, really), or you can watch the lectures from the people who wrote SICP.
Further down the road, get a hold of "Purely Functional Data Structures", as it'll get into the hard-core deep design and considerations you have to take into account in functional languages --it uses ML (which ocaml derived from).
I really recommend "On Lisp" from Paul Graham.
It is concise and very readable even for beginners in functional programming (as I was when I read it). It contains a lot of very short examples, each which helps to understand one single thing.
I often thought reading this book: this is just the language containing exactly the features I ever wanted in other (nonfunctional) languages, but never got. :-(And this is exactly the book to learn it, always comprehensible, sometimes even funny!
You may get it for free at the author's site!
I really like Thompson?s ?Haskell: The Craft of Functional Programming? because it?s well written and Haskell allows an easier start than other functional languages while being completely pure (unlike Lisp or Scheme).
Since there are a bunch of different functional programming languages, it's hard to recommend books. But if you're interested in Common Lisp, recently I've been reading "Practical Common Lisp" by Peter Seibel, which you can check out online for free before dropping your hard earned cash on it. It's a pretty gentle introduction to CL, with great explanations and tons of examples. Seibel's a great writer (example: read the story of Mac,) he's good at keeping you engaged, which is really where SICP falls down, I think. It's just so dry! But while Practical Common Lisp is pretty example-heavy, it doesn't really have challenges to work through, although the examples are mostly designed to let you continue to work and build on them.
Another good book, this one Scheme-oriented: How to Design Programs. (Online) I haven't had as much time with this book, being more of a Lisper than a Schemer myself, but it's well written, has good explanations and examples, and has lots of exercises to work on. It seems pretty popular in the Scheme crowd.
I learned from Jeffrey Ullman's Elements of ML Programming, which is pretty good. It loses points for being about Standard ML, when OCaml, F#, and Haskell are (seemingly) more popular.
I found The Little Schemer a great, great introduction to functional programming. It's entirely based on simple, bite sized examples which are built up upon as the book goes on.
The Schemers Guide and related software - seriously good stuff
Haskell is a very good functional programming language for beginners. Someone had asked about good resources for Haskell, so I will point you there.
If you are looking for a good book on Functional Programming, I would recommend "Functional Programming: Practice and Theory" by Bruce J. Maclennan.
It is however required that you brush up on your Set Theory and Logic before giving it a read. It includes examples in LISP, Haskell and other languages.
I feel Purely Functional Data Structures by Chris Okasaki is worth a look.
Check out Introduction to functional programming. It offers a different perspective.
Real-World Functional Programming (with examples in F# and C#)
If you have experience with .NET, Expert #F is good.
F# is derived from OCaml. Lisp is more pure as functional languages go.
I have heard good things about Haskell Functional Programming, but I also found this list of functional programming books at amazon that might be helpful to you.
I'm working on a Scheme interpreter written in C. Currently it uses the C runtime stack as its own stack, which is presenting a minor problem with implementing continuations. My current solution is manual copying of the C stack to the heap then copying it back when needed. Aside from not being standard C, this solution is hardly ideal.
What is the simplest way to implement continuations for Scheme in C?
A good summary is available in Implementation Strategies for First-Class Continuations, an article by Clinger, Hartheimer, and Ost. I recommend looking at Chez Scheme's implementation in particular.
Stack copying isn't that complex and there are a number of well-understood techniques available to improve performance. Using heap-allocated frames is also fairly simple, but you make a tradeoff of creating overhead for "normal" situation where you aren't using explicit continuations.
If you convert input code to continuation passing style (CPS) then you can get away with eliminating the stack altogether. However, while CPS is elegant it adds another processing step in the front end and requires additional optimization to overcome certain performance implications.
I remember reading an article that may be of help to you: Cheney on the M.T.A. :-)
Some implementations of Scheme I know of, such as SISC, allocate their call frames on the heap.
@ollie: You don't need to do the hoisting if all your call frames are on the heap. There's a tradeoff in performance, of course: the time to hoist, versus the overhead required to allocate all frames on the heap. Maybe it should be a tunable runtime parameter in the interpreter. :-P
The traditional way is to use setjmp and longjmp, though there are caveats.
Here's a reasonably good explanation
If you are starting from scratch, you really should look in to Continuation Passing Style (CPS) transformation. Good sources include "LISP in small pieces" and Marc Feeley's scheme in 90 minutes presentation: http://www.iro.umontreal.ca/~boucherd/mslug/meetings/20041020/minutes-en.html .
Examples that you can look at are: Chicken (a Scheme implementation, written in C that support continuations); Paul Graham's On Lisp - where he creates a CPS transformer to implement a subset of continuations in Common Lisp; and Weblocks - a continuation based web framework, which also implements a limited form of continuations in Common Lisp.
Continuations aren't the problem: you can implement those with regular higher-order functions using CPS. The issue with naive stack allocation is that tail calls are never optimised, which means you can't be scheme.
The best current approach to mapping scheme's spaghetti stack onto the stack is using trampolines: essentially extra infrastructure to handle non-C-like calls and exits from procedures. See Trampolined Style (ps).
There's some code illustrating both of these ideas.
Besides the nice answers you've got so far, I recommend Andrew Appel's Compiling with Continuations. It's very well written and while not dealing directly with C, it is a source of really nice ideas for compiler writers.
The Chicken Wiki also has pages that you'll find very interesting, such as internal structure and compilation process (where CPS is explained with an actual example of compilation).
It seems Dybvig's thesis is unmentioned so far. It is a delight to read. The heap based model is the easiest to implement, but the stack based is more efficient. Ignore the string based model.
R. Kent Dybvig. "Three Implementation Models for Scheme". http://www.cs.indiana.edu/~dyb/papers/3imp.pdf
Also check out the implementation papers on ReadScheme.org. http://library.readscheme.org/page8.html
The abstract is as follows:
This dissertation presents three implementation models for the Scheme Program- ming Language. The rst is a heap-based model used in some form in most Scheme implementations to date; the second is a new stack-based model that is considerably more ecient than the heap-based model at executing most programs; and the third is a new string-based model intended for use in a multiple-processor implementation of Scheme.
The heap-based model allocates several important data structures in a heap, including actual parameter lists, binding environments, and call frames.
The stack-based model allocates these same structures on a stack whenever possible. This results in less heap allocation, fewer memory references, shorter instruction sequences, less garbage collection, and more ecient use of memory.
The string-based model allocates versions of these structures right in the program text, which is represented as a string of symbols. In the string-based model, Scheme programs are translated into an FFP language designed specically to support Scheme. Programs in this language are directly executed by the FFP machine, a multiple-processor string-reduction computer.
The stack-based model is of immediate practical benet; it is the model used by the author's Chez Scheme system, a high-performance implementation of Scheme. The string-based model will be useful for providing Scheme as a high-level alternative to FFP on the FFP machine once the machine is realized.
Ward's Wiki has a page devoted to this.
Continuations basically consist of the saved state of the stack and CPU registers at the point of context switches. At the very least you don't have to copy the entire stack to the heap when switching, you could only redirect the stack pointer.
Continuations are trivially implemented using fibers. http://en.wikipedia.org/wiki/Fiber_%28computer_science%29 . The only thing that needs careful encapsulation is parameter passing and return values.
In Windows fibers are done using the CreateFiber/SwitchToFiber family of calls. in Posix-compliant systems it can be done with makecontext/swapcontext.
boost::coroutine has a working implementation of coroutines for C++ that can serve as a reference point for implementation.
Use an explicit stack instead.
Patrick is correct, the only way you can really do this is to use an explicit stack in your interpreter, and hoist the appropriate segment of stack into the heap when you need to convert to a continuation.
This is basically the same as what is needed to support closures in languages that support them (closures and continuations being somewhat related).