picomath

C#

Gamma.cs

using System;

class Gamma
{
    // Visit http://www.johndcook.com/stand_alone_code.html for the source of this code and more like it.

    // Note that the functions Gamma and LogGamma are mutually dependent.

    public static double gamma
    (
        double x    // We require x > 0
    )
    {
        if (x <= 0.0)
        {
            string msg = string.Format("Invalid input argument {0}. Argument must be positive.", x);
            throw new ArgumentOutOfRangeException(msg);
        }

        // Split the function domain into three intervals:
        // (0, 0.001), [0.001, 12), and (12, infinity)

        ///////////////////////////////////////////////////////////////////////////
        // First interval: (0, 0.001)
        //
        // For small x, 1/Gamma(x) has power series x + gamma x^2  - ...
        // So in this range, 1/Gamma(x) = x + gamma x^2 with error on the order of x^3.
        // The relative error over this interval is less than 6e-7.

        const double gamma = 0.577215664901532860606512090; // Euler's gamma constant

        if (x < 0.001)
            return 1.0/(x*(1.0 + gamma*x));

        ///////////////////////////////////////////////////////////////////////////
        // Second interval: [0.001, 12)

        if (x < 12.0)
        {
            // The algorithm directly approximates gamma over (1,2) and uses
            // reduction identities to reduce other arguments to this interval.
            
            double y = x;
            int n = 0;
            bool arg_was_less_than_one = (y < 1.0);

            // Add or subtract integers as necessary to bring y into (1,2)
            // Will correct for this below
            if (arg_was_less_than_one)
            {
                y += 1.0;
            }
            else
            {
                n = (int) (Math.Floor(y)) - 1;  // will use n later
                y -= n;
            }

            // numerator coefficients for approximation over the interval (1,2)
            double[] p =
            {
                -1.71618513886549492533811E+0,
                 2.47656508055759199108314E+1,
                -3.79804256470945635097577E+2,
                 6.29331155312818442661052E+2,
                 8.66966202790413211295064E+2,
                -3.14512729688483675254357E+4,
                -3.61444134186911729807069E+4,
                 6.64561438202405440627855E+4
            };

            // denominator coefficients for approximation over the interval (1,2)
            double[] q =
            {
                -3.08402300119738975254353E+1,
                 3.15350626979604161529144E+2,
                -1.01515636749021914166146E+3,
                -3.10777167157231109440444E+3,
                 2.25381184209801510330112E+4,
                 4.75584627752788110767815E+3,
                -1.34659959864969306392456E+5,
                -1.15132259675553483497211E+5
            };

            double num = 0.0;
            double den = 1.0;
            int i;

            double z = y - 1;
            for (i = 0; i < 8; i++)
            {
                num = (num + p[i])*z;
                den = den*z + q[i];
            }
            double result = num/den + 1.0;

            // Apply correction if argument was not initially in (1,2)
            if (arg_was_less_than_one)
            {
                // Use identity gamma(z) = gamma(z+1)/z
                // The variable "result" now holds gamma of the original y + 1
                // Thus we use y-1 to get back the orginal y.
                result /= (y-1.0);
            }
            else
            {
                // Use the identity gamma(z+n) = z*(z+1)* ... *(z+n-1)*gamma(z)
                for (i = 0; i < n; i++)
                    result *= y++;
            }

            return result;
        }

        ///////////////////////////////////////////////////////////////////////////
        // Third interval: [12, infinity)

        if (x > 171.624)
        {
            // Correct answer too large to display. 
            return double.PositiveInfinity;
        }

        return Math.Exp(logGamma(x));
    }

    public static double logGamma
    (
        double x    // x must be positive
    )
    {
        if (x <= 0.0)
        {
            string msg = string.Format("Invalid input argument {0}. Argument must be positive.", x);
            throw new ArgumentOutOfRangeException(msg);
        }

        if (x < 12.0)
        {
            return Math.Log(Math.Abs(gamma(x)));
        }

            // Abramowitz and Stegun 6.1.41
        // Asymptotic series should be good to at least 11 or 12 figures
        // For error analysis, see Whittiker and Watson
        // A Course in Modern Analysis (1927), page 252

        double[] c =
        {
             1.0/12.0,
            -1.0/360.0,
             1.0/1260.0,
            -1.0/1680.0,
             1.0/1188.0,
            -691.0/360360.0,
             1.0/156.0,
            -3617.0/122400.0
        };
        double z = 1.0/(x*x);
        double sum = c[7];
        for (int i=6; i >= 0; i--)
        {
            sum *= z;
            sum += c[i];
        }
        double series = sum/x;

        double halfLogTwoPi = 0.91893853320467274178032973640562;
        double logGamma = (x - 0.5)*Math.Log(x) - x + halfLogTwoPi + series;    
        return logGamma;
    }

}