package normal_cdf_inverse
import "math"
func RationalApproximation (t float64) float64 {
// Abramowitz and Stegun formula 26.2.23.
// The absolute value of the error should be less than 4.5 e-4.
c := []float64{2.515517, 0.802853, 0.010328}
d := []float64{1.432788, 0.189269, 0.001308}
numerator := (c[2]*t + c[1])*t + c[0]
denominator := ((d[2]*t + d[1])*t + d[0])*t + 1.0
return t - numerator / denominator
}
func NormalCDFInverse (p float64) float64 {
//assert p > 0.0 and p < 1
// See article above for explanation of this section.
if p < 0.5 {
// F^-1(p) = - G^-1(p)
return -RationalApproximation( math.Sqrt(-2.0*math.Log(p)) )
}
// F^-1(p) = G^-1(1-p)
return RationalApproximation( math.Sqrt(-2.0*math.Log(1.0-p)) )
}