function rational_approximation(t)
-- Abramowitz and Stegun formula 26.2.23.
-- The absolute value of the error should be less than 4.5 e-4.
c = {2.515517, 0.802853, 0.010328}
d = {1.432788, 0.189269, 0.001308}
numerator = (c[3]*t + c[2])*t + c[1]
denominator = ((d[3]*t + d[2])*t + d[1])*t + 1.0
return t - numerator / denominator
end
function normal_cdf_inverse(p)
assert(p > 0.0 and p < 1, "Invalid input")
-- See article above for explanation of this section.
if p < 0.5 then
-- F^-1(p) = - G^-1(p)
return -rational_approximation( math.sqrt(-2.0*math.log(p)) )
else
-- F^-1(p) = G^-1(1-p)
return rational_approximation( math.sqrt(-2.0*math.log(1.0-p)) )
end
end