unit gamma;
interface
uses math;
function gamma(x: float): float;
function log_gamma(x: float): float;
implementation
{ Visit http://www.johndcook.com/stand_alone_code.html for the source of this code and more like it. }
{ Note that the functions Gamma and LogGamma are mutually dependent. }
function gamma(x: float): float;
const
euler_gamma = 0.577215664901532860606512090; { Euler's gamma constant }
{ numerator coefficients for approximation over the interval (1,2) }
p: array [0..7] of float = (
-1.71618513886549492533811E+0,
2.47656508055759199108314E+1,
-3.79804256470945635097577E+2,
6.29331155312818442661052E+2,
8.66966202790413211295064E+2,
-3.14512729688483675254357E+4,
-3.61444134186911729807069E+4,
6.64561438202405440627855E+4
);
{ denominator coefficients for approximation over the interval (1,2) }
q: array [0..7] of float = (
-3.08402300119738975254353E+1,
3.15350626979604161529144E+2,
-1.01515636749021914166146E+3,
-3.10777167157231109440444E+3,
2.25381184209801510330112E+4,
4.75584627752788110767815E+3,
-1.34659959864969306392456E+5,
-1.15132259675553483497211E+5
);
var y: float;
n: integer;
arg_was_less_than_one: boolean;
num, den: float;
z: float;
i: integer;
result: float;
begin
Assert(x > 0);
{ Split the function domain into three intervals: }
{ (0, 0.001), [0.001, 12), and (12, infinity) }
(**************************************************************************
First interval: (0, 0.001)
For small x, 1/Gamma(x) has power series x + gamma x^2 - ...
So in this range, 1/Gamma(x) = x + gamma x^2 with error on the order of x^3.
The relative error over this interval is less than 6e-7.
*)
if x < 0.001 then
gamma := 1.0/(x*(1.0 + euler_gamma*x))
(**************************************************************************
Second interval: [0.001, 12)
*)
else if x < 12.0 then begin
{ The algorithm directly approximates gamma over (1,2) and uses }
{ reduction identities to reduce other arguments to this interval. }
y := x;
n := 0;
arg_was_less_than_one := (y < 1.0);
{ Add or subtract integers as necessary to bring y into (1,2) }
{ Will correct for this below }
if arg_was_less_than_one then
y := y + 1.0
else begin
n := integer(floor(y)) - 1; { will use n later }
y := y - n;
end;
num := 0.0;
den := 1.0;
z := y - 1;
for i := 0 to 7 do begin
num := (num + p[i])*z;
den := den*z + q[i];
end;
result := num/den + 1.0;
{ Apply correction if argument was not initially in (1,2) }
if arg_was_less_than_one then
{ Use identity gamma(z) = gamma(z+1)/z }
{ The variable "result" now holds gamma of the original y + 1 }
{ Thus we use y-1 to get back the orginal y. }
result := result / (y-1.0)
else
{ Use the identity gamma(z+n) = z*(z+1)* ... *(z+n-1)*gamma(z) }
for i := 1 to n do begin
result := result * y;
y := y + 1;
end;
gamma := result;
end
(**************************************************************************
Third interval: [12, infinity)
*)
else if x > 171.624 then
{ Correct answer too large to display. }
gamma := 1.0/0 { float infinity }
else
gamma := exp(log_gamma(x))
end;
function log_gamma(x: float): float;
const
c: array [0..7] of float = (
1.0/12.0,
-1.0/360.0,
1.0/1260.0,
-1.0/1680.0,
1.0/1188.0,
-691.0/360360.0,
1.0/156.0,
-3617.0/122400.0
);
halfLogTwoPi = 0.91893853320467274178032973640562;
var z: float;
sum: float;
i: integer;
series: float;
begin
Assert(x > 0);
if x < 12.0 then
log_gamma := ln(abs(gamma(x)))
else begin
{ Abramowitz and Stegun 6.1.41 }
{ Asymptotic series should be good to at least 11 or 12 figures }
{ For error analysis, see Whittiker and Watson }
{ A Course in Modern Analysis (1927), page 252 }
z := 1.0/(x*x);
sum := c[7];
for i := 6 downto 0 do begin
sum := sum * z;
sum := sum + c[i];
end;
series := sum/x;
log_gamma := (x - 0.5)*ln(x) - x + halfLogTwoPi + series;
end;
end;
end.