import math
def rational_approximation(t):
# Abramowitz and Stegun formula 26.2.23.
# The absolute value of the error should be less than 4.5 e-4.
c = [2.515517, 0.802853, 0.010328]
d = [1.432788, 0.189269, 0.001308]
numerator = (c[2]*t + c[1])*t + c[0]
denominator = ((d[2]*t + d[1])*t + d[0])*t + 1.0
return t - numerator / denominator
def normal_CDF_inverse(p):
assert p > 0.0 and p < 1
# See article above for explanation of this section.
if p < 0.5:
# F^-1(p) = - G^-1(p)
return -rational_approximation( math.sqrt(-2.0*math.log(p)) )
else:
# F^-1(p) = G^-1(1-p)
return rational_approximation( math.sqrt(-2.0*math.log(1.0-p)) )